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The Need for Wide-Area Measurements

• Following the east coast blackout, a federal 
commission was appointed

• Fault found with utility companies: no real-time 
knowledge of the state of the power system was 
available

• Recommendation made: establish a real-time 
measurement system and develop computer based 
operational and management tools

This Was after the 1965 blackout!This Was after the 1965 blackout!



DOE/FERC Feb 2006 Report to 
Congress:

• 2003 Blackout due, in part, to “lack of 
awareness of deteriorating conditions”

• “Technology now exists that could be used 
to establish a real-time transmission 
monitoring system…”

• Additionally: NERC identified the need for 
“Situational Awareness” of the power grid





Synchrophasor View of the
Power System



Origin of Phasors
> Rotating rotors = alternating currents & 

voltages
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> Phasors are well established means of representing 
ac circuits

Charles Proteus Steinmetz (1865-1923)
Complex Quantities and their use in Electrical 
Engineering; Charles Proteus Steinmetz; Proceedings of 
the International Electrical Congress, Chicago, IL; 
AIEE Proceedings, 1893; pp.33-74.
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IEEE C37.118 Synchrophasor Definition
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Measurement Offsets
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Real-Time Correction - Currents



C37.118 Synchronous Reporting Rates

System 
Frequency

50 Hz 60 Hz

Report rates 
(phasors/sec)

10 25 10 12 15 20 30

Optional Phasor Reporting Rates:
50/100 phasors/sec on 50 Hz systems
60/120 phasors/sec on 60 Hz systems



Synchronized Reporting

Report Rate = 60 Phasors/second
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Classic Fourier Response to off-nominal 
Frequency

1pu



Mathematical Foundation
Phasor Model and Taylor Series Expansion of Model
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Asynchronous Sampling & Timing
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Test Results of the 4-Parameter Model:

Over the frequency range of 45-70Hz:

TVE for voltages < 0.30%

TVE for currents < 0.40%

TVE at 10% of THD < 0.45%



Phasor Data Concentrator Architecture

RAID

HDD
SSD

. . . . .

PMU Client
Instance 1

Streaming
Data Rate:

1-120 Phasors/sec
Per IEEE C37.118

HDD=Hard Disk Drive
SSD=Solid State Disk

Historian

OPC – High Speed Interface

Other
Applications

PMU-1 PMU-2 PMU-n

F1

PMU Client
Instance 2

PMU Client
Instance n. . . . .

Historian to
Historian

Comms via SQL

IEEE C37.118
Communication F1=Filter 1

F2=Filter 2
Etc.Synchrophasor

Output – C37.118

…F2 FnFilters



Power Density Spectrum – West Coast



PDC Remote Control

“Control” Distribution  via 61850  GOOSE

Controller

Network

Control Bits 
Per GOOSE or
C37.118 or DNP

Remote Trigger
Cross Trigger

RelayRelay Relay RelayPMU



Reporting Hierarchy Options

PMU PMU PMU. . .

Collect/
Decide
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Very High-speed
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Synchrophasor System Architecture

SONETSONET

Station 1Station 1 Station nStation n

User Interface User Interface --
and Applicationsand Applications

Super ArchiveSuper Archive

/Historian/Historian

STM1/4STM1/4

•• Synchrophasor TrendSynchrophasor Trend
•• System FrequenciesSystem Frequencies
•• EventsEvents
•• etcetc

PDC - with
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EMS

ICCPICCP

Decision: Stand Alone vs. Integrated PMU



Client/Server Functionality
• Client:

– Request for Configuration
– Request to Start/Stop Stream
– File Request (not addressed in Standard)
– Command Issuance

• Server:
– Streams data / Sends configuration / files when 

requested
– Provides operational status

• Clock Synched
• Triggered
• Configuration Changed

• Responds to Commands

PDC

Req Resp

PMU



Streaming Data Rates – Single PMU

• Packet Model #1:
– 14 Phasors
– 8 Analogs
– Frequency
– ROCOF
– 1 Digital Words

> All Real Numbers
> 60 Packets/sec

• Communication Bandwidth Requirement:
– 106,560 Bits/sec



System Storage Requirements
• 100 PMU Model @ 60 Packets/sec:

– 250 Bytes/packet/PMU
– 25,000 Bytes/packet for 100 PMUs
– 1.5 MB/sec
– 90 MB/min
– 5.4 GB/hour
– 129.6 GB/day
– 3.9 TB/month
– 46.6 TB/year



Proposed PJM PMU Locations



ONS - Brazil



Applications
Computer Apps
> State Estimator (SE) integration
> Advanced Contingency Analysis

Operations
> Black Start exercise visibility
> General operational visibility

Planning
> Island phase angle studies
> Voltage collapse proximity indicator

System Protection
> System-wide disturbance post-analysis
> Line impedance verification
> Wide Area Out-of-Step



State estimation with phasor measurements:
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Synchrophasor Display



Cleveland Separation – Aug 14, 2003
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Adaptive out-of-step relaying
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Wide Area Phasor ViewingWide Area Phasor Viewing
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Real Time Trending / Real Time Trending / 
Historical PlaybackHistorical Playback
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Wide-Area Analytics – Results To Date
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Line Parameter Calculation / 
Dynamic Line Loading

I1 I2L R

1 2

V1 V2

Measure:  V1, I1, V2, I2,Ta
Compute:  R, L, C, ∆C, Tc

Simple Calculation…High Impact
Tc,∆C may be an indication of sag…potential patent



Synchrophasor Spectral Analysis

Data
Transform

Input: Synchrophasors Output: Sub-synchronous
Modal Analysis

Provide Tools (Fourier Transform) to Aid Analysis



Synchrophasor Based
Backup Current Differential

PMU

PMU

Zone of
Protection

• Hi-Speed data streaming 
standardized (30 phasors/sec 
per standard)
•Low Communication latency 
available (7ms as seen 
previously)
• Precise Zone isolation through 
current differential protection
• Bonus: Double ended fault 
location

PDC/ Controller



Power System Model Validation
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System Contour ViewSystem Contour View
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System Frequency View
• Frequency – critical 
parameter for 
understanding system 
behavior
• FNET project at VaTech 
tracks frequency after an 
event
• Speed of Frequency Wave:

• 350 Mi/Sec – East
• 1100 Mi/Sec – WECC

• MW Lost ≈ ∆f * 31464



Development Needs: Wide Area Control

Transmission Paths
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Wide Area Control
•1-60 Phasors/sec
•Control Range
•Control Device Status

Phasor
Measurement
Units

Input Data:
•Operate Point change
•Linear Control 
•On/Off

C O
N
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Data Synchronization &
Control Coordination

EMS applications
for self-healing grid 

State
Measurement

Focus: Dynamic Stability (advanced Weiner-Hopf) & Closed Loop Control



SRP Black Start System Configuration



69kV Islands –
Excessive Angle Detection



Synchrophasors:
The “Swiss Army Knife” of the 
Electric Utility Industry



Smart Grid Technologies



Mark’s Definition of the Smart Grid:
• Finally implementing what was 

proposed more than 25 years ago…
• “Homeostatic Utility Control”, F.C. Schweppe et al, IEEE 
Transactions on Power Apparatus and Systems, Vol. 
PAS-99, Number 3, May 1980  - (Schweppe mentions five 
minute updates of prices)

• A New Measurement Technique for Tracking Voltage 
Phasors, Local System Frequency, and Rate of Change of 
Frequency – IEEE 1982 Summer Meeting

• Development and Pilot Demonstration of Hardware for an 
AEP System Test Program Relative to the Variable Spot 
Pricing of Electricity – American Power Conference – 1990.

• EPRI Distribution Automation Project – 1990.

•EPRI Electric Vehicle Program - 1978



Example: Industrial Load Shedding
Load Shedding solutions to keeps critical processes running

• Identifies when there is a lack of power to supply required load 

• Dynamically sheds least critical loads to keep processes essential to the business running 



V1 Angle Response to Overpower Island

+ 180°

- 180°

Island 
Created

Generator 
Slowing

∆t = 1.78 sec



Calculated System Frequency
Overpowered Island System Frequency 
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Utility Load Shed:
Palo Verde Nuclear Power Plant SIPS



The Need For Mitigation?
Palo Verde Unit 2 Was Up-Rated by 121MW.
This Impacted the safe Operation of COI. (COI is 3 
500KV lines, WECC Path 66)

Malin / Round Mountain #1
Malin / Round Mountain #2

Captain Jack / Olinda



PHOENIX

North Gila

Devers
Palo Verde

Hassayampa
Kyrene

Westwing

Palo Verde
Transmission System

ARIZONA

Red Hawk

Arlington Valley

Panda

Jojoba

LOCATION of SITES



SRP SONET System

Network elements:
17  OC-48 Nodes
218 MUX Nodes



Microgrid Controllers optimizes site generation

• Selects the most cost effective generation available to support the load

• Optimizes green power by dispatching power storage when excess generation is available 

• Indicates amount of energy in storage (Fuel Cell and Diesel)

Example: Microgrid Control



Example Microgrid: Bella 
Coola

Bella Coola

Utility Service Vehicle

Microgrid Controller

MDS iNET 900

Clayton Falls  2.12 MW Renewable

Bella Coola
2.1/1.5MW

Flow or
Conventional

Battery
125 kW / 400 kW-hr

Fuel Cell
125 kW

Storage
3.3 MW-hr

Electrolyzer
300 kW

6.2 MW Diesel

Hagensborg
2.6/1.7 MW

25 kV Distribution

Multilink LAN

Enervista

modem

Ah Sin Heek - Diesel / Hydrogen Energy Storage Site

UR RelayUR Relay

GE Company Proprietary



Microgrid Control System Features
3. Tie Line Control – Distributed Energy Resource Aggregation
• Energy aggregation: To the grid, the aggregated distribution system looks like one 

well-behaved dispatchable energy resource

• Active and reactive power

• Power ramp rate  limits

• Ancillary services (voltage/VAR regulation, frequency droop…)

Example: Windfarm tieline Control

GE Company Proprietary
75km

SCR ~3.5 (weak interconnection)
~20 km

POI 75 KM away! 
Compensation for 
long cable runs 
including charging 
is required

Collector Bus Utility
Transmission

Bus (POI)

Collector Bus Utility
Transmission

Bus (POI)

Individual WTG

Voltage at POI

Wind farm power output



Example: Wide Area Protection 
Enabling outage detection and allows emergency reconfiguration of the network

• Multiplexers provide the communications backbone to intelligent control devices

• Intelligent controllers shed load to match available generation

• Intelligent controllers switch to alternate generation sources and manage re-routing of power



NanoCoating Technology



Improving grid reliability
Super-Hydrophobic coatings so repellant that: 
• Honey slides off it like mercury
• Water bounces and beads off

The Energy Sector Application
• New transmission & distribution line 

coating resists ice build-up

• New coatings protect coastal assets 
from salt damage

• New transformer winding material fights 
insulation breakdown



Looming Problems: Intermittent Renewables

Source: Shell Global Scenarios
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Voltage Regulation

Voltage at POI

Wind Plant Power Output

Wind Plant Voltage
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WindFREE tm Field Test Results

Typical Grid 
Requirements
> +/- 0.95 pf req’d at POI,  +/-0.9 at 

the turbine
> WindFREE tm voltage regulation
> GE patented turbine voltage 

regulator and WindCONTROL tm

(GE’s WFMS)
Generator Main

Transformer

34.5kV

POI 

Converter
Control WFMS

Wind Turbine kW

kVAR

230kV

Substation

150150
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Transformer
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Capability Gaps – What’s Missing Today

Integration Technologies

Building Block Technologies

Intermittency Mgmt

Frequency/Voltage Control
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InfrastructureControl/Monitoring
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