

NPCC Task 5 Study

New York State Reliability Council DSWG Meeting

Donal Kidney – NPCC Manager of System Studies

March 8, 2012

Northeast Power Coordinating Council, Inc.

Presentation Outline

- Background
- Study Objectives
- Methodology
- Summary of Results
- Conclusions
- Recommendations

Background

- The Blackout Study included six separate tasks
- Final report (Task 6) issued following the completion of Tasks 1-4
 - Report approved Nov. 2005
- Task 5 is the remaining Blackout Study task to be completed
- Task 5 delayed due to prioritization of work (e.g. UFLS, OTA, etc.)

Objectives

- Investigate potential mitigation measures to improve ability of system to withstand a major system disturbance
- Review NERC technical reference on Power Plant and Transmission System Protection Coordination and recommend protection functions that could benefit from including explicit or screening models in studies

Methodology

- Develop study cases
- Assess coherent generation groups
- Investigate potential advance indicators of system separation
- Assess performance of post contingency actions including the benefits of tripping where out-of-step conditions occur

Results of Coherent Generation Groups Analysis

- Two coherent generation groups (N-S-C-E and NE-S-C-E) identified for Ontario
- One coherent generation group identified for the Maritimes consistent with prior study
- Two coherent generation groups (New England-Maritimes and Northern Maine-Maritimes) identified for New England
- One coherent generation group identified as West of Central East for New York

Evaluation of Potential Advance Indicators of System Separation

- Change in power flow supervised by change in bus voltage angle
- Triggers using Phasor Measurement Unit data
 - Bus voltage angle difference
 - Bus frequency difference and its derivative
 - Bus voltage magnitude and its derivative
- Bus voltage angular velocity vs. bus voltage angular acceleration
- Generator rotor speed/frequency and acceleration
- Reactive power and its derivative (Q-Qdot)

- Bus frequency responses demonstrated controlled system separation/islanding along boundaries that minimize generation load mismatch is preferable to uncontrolled separation
- Out-of-step generation rejection demonstrated potential for preventing uncontrolled system separation

Results on Tripping where OOS conditions occur

- System separation at locations where out-ofstep conditions occur helps reduce voltage and power oscillations
- The system would still have separated as it did on August 14, 2003 even if the two 120 kV cables connecting Southern and Northern Detroit were tripped

Conclusions

- It is beneficial to separate the system where outof-step conditions occur
- Controlled system separation is preferred in the presence of a single coherent generation group
- A reliable advance indicator for system separation could not be determined from this study
- Uncoordinated generation protection schemes should be modeled in planning and system studies March 8, 2012

Recommendations

- Further studies are needed to determine the reliability of the advance indicators for system separation
 - Need to be specific to particular locations, regional boundaries, or interfaces
- Types of study identified which would benefit from including explicit or screening models for generator protection functions

	Generator Protection Functions to be Modelled	
Study Type		
	via explicit Models	via Screening Models
UFLS Assessment	Over/under-frequency	V/Hz (24), under-
	(81), OOS (78)	voltage (27), over-
		voltage (59)
UVLS Study	Under-voltage (27),	over-current (51V)
	over-voltage (59)	
Analysis of Large	Over/under-frequency	V/Hz (24), over-current
System Disturbance	(81), under-voltage	(51V)
(eg. Event	(27), over-voltage (59),	
reconstruction of large	OOS (78)	
scale blackout/system		
breakup)		
Overall Transmission	Over -frequency (81),	under-voltage (27),
Assessments	OOS (78)	over-voltage (59)
Inter-regional	Over-frequency (81),	under-voltage (27),
Transmission Studies	OOS (78)	over-voltage (59)