

NYSRC Distributed Energy Resources Workshop Summary

Roger Clayton, NYSRC Chairman

Presentation to NPCC Governmental/Regulatory Affairs Advisory Group

Toronto, Canada. December 4, 2018

8 1

NEW YORK STATE

NYSRC DER Workshop Agenda – November 7, 2018

Workshop Objective – To raise awareness of possible adverse reliability impacts of widespread DER penetration

- 1. Introduction
- 2. Regulatory Status
 - National
 - Regional
 - New York
- 3. DER Penetration into NYCA (current & future)
 - Retail (net metered)
 - Wholesale (REV DSP)
 - Wholesale (NYISO queue)
- 4. Technical Considerations
 - Fundamentals
 - Operations
 - Planning
- 5. Panel Discussion

All presentations available on the NYSRC home page: http://www.nysrc.org/

DER Regulatory Status

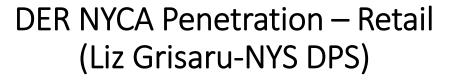
FERC

- Order 841 Electric Storage (February 2018)
- Staff Report DER Technical Considerations for the BPS (February 2018)
- Technical Conference DER Technical Considerations for the BPS (April 2018)

IEEE

- IEEE Standard 1547-2018 Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces
- Technical Report Impact of Inverter Based Generation on BPS Dynamics & Short-Circuit Performance (July 2018)

NERC


- Standard PRC-024-2 Generator Frequency and Voltage Protective Relay Settings (July 2016)
- Reliability Guideline Modeling DER in Dynamic Load Models (December 2016)
- Report Connection Modeling & Reliability Considerations (February 2017)
- Reliability Guideline DER Modeling (September 2017)
- Report 900 MW Fault Induced Solar Photovoltaic Resource Interruption Disturbance (February 2018)
- Technical Brief Data Collection Recommendations (March 2018)
- Industry Recommendation Loss of Solar Resources during Transmission Disturbances due to Inverter Settings (May 2018)
- Reliability Guideline BPS Connected Inverter Based Resource Performance (September 2018)
- Working Group System Planning for Impact of DER (SPIDER WG) (September 2018)

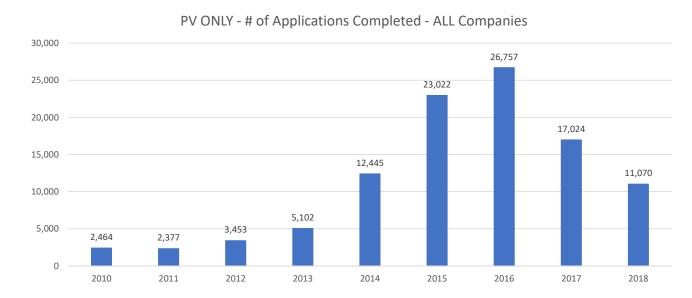
DER Regulatory Status

NPCC

- Report on the Impact of DER (March 2016)
- Report on the Effect of Lower System Inertia on Transmission Reliability due to Inverter Based Generation (December 2016)
- UFLS Study on Sensitivity to DER
- On-Going
 - Development of guidelines & practices to address DER modeling in planning studies
 - · Examine potential regional approach to DER modeling
 - Study potential reliability impacts of DER

REV Targets:

- 40% reduction in GHG from 1990 levels
- 50% renewables <= 2030
- 600E12 Btu increase in EE from 1990 levels
- 1.5 GW energy storage <= 2025
- NY Sun incentive program 3 GW <= 2023


New York Standardized Interconnection Requirements (SIR) apply to:

- New DG facilities sized up to 5 MW AC nameplate aggregated on the customer side of the PCC;
- New energy storage, stand alone or combined with DG, also limited to 5 MW
- Modifications to an existing facility that affect the interface at the PCC

DER NYCA Penetration – Retail (Liz Grisaru-NYS DPS)

Number of PV Projects in-service <= August 2018

New York State DPS - SIR Interconnection Queue Summary:


http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/286d2c179e9a5a8385257fbf003f1f7e/

DER NYCA Penetration – Retail (Liz Grisaru-NYS DPS)

Net Capacity (KW) of PV Projects in Service <= August 2018

	<u>PV</u>	_				
Company	0-50	50-300	300-1000	1000-2000	2000-5000	Total
National Grid	149,113	49,594	20,154	135,636	-	354,496
Con Edison	140,880	33,711	26,109	6,312	-	207,012
Central Hudson	62,618	6,259	6,094	6,295	-	81,266
Orange and Rockland	48,226	3,437	2,653	16,544	-	70,859
NYSEG	60,512	12,477	8,718	37,502	-	119,208
RGE	11,138	4,307	6,366	22,498	-	44,310
PSEG	299,930	27,241	19,301	13,316	8,000	367,788
Total	772,416	137,025	89,395	238,102	8,000	1,244,938

New York State DPS - SIR Interconnection Queue Summary:

http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/286d2c179e9a5a8385257fbf003f1f7e/

DER NYCA Penetration – Wholesale (Paul Haering-Central Hudson)

Interconnected Projects & Queue Size

- Queue Coordination is critical as interconnection queues continues to grow
- Besides PV and Wind, Battery storage resources proposals are becoming significant

	In Service (MW)	In Service (# of Projects)	In Queue (MW)	In Queue (# of Projects)
NYISO	1,884	24	15,318	140
NYS SIR	1,362	109,054	1,849	13,310
Total	3,246	109,078	17,167	13,450

Reforming the Energy Vision Programs as of 2018

- Distributed Energy Resources (DER)
 - Inverter connected solar & wind resources
 - NYISO 2018 Gold Book nameplate total installed capacity before the meter
 - Wind 1739 MW <=2018, ~3,300 MW <=2025 (Queue estimate)
 - Solar 31 MW <=2018, ~8,900 MW <=2025 (Queue estimate)
 - NYISO 2018 Gold Book nameplate total installed capacity <u>behind the meter</u>
 - Non-solar
 213 MW <=2018, ~422 MW <=2025
 - Solar 1,504 MW <=2018, ~3,313 MW <=2025

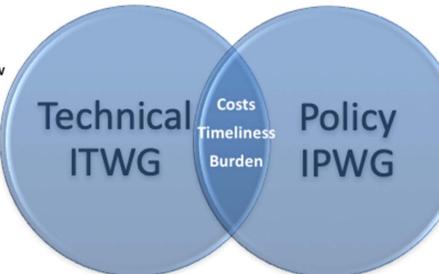
Interconnection study lead and process based on three criteria

- Intended Market (Wholesale or Retail)
- Interconnection Point (Transmission, Distribution FERC or non-FERC jurisdicational)
- Project Size

Intended Market	Interconnection Point *	Project Size	Study Process	
	NYS Transmission System or	> 5MW	NYISO	
Wholesale	Distribution subject to NYISO's OATT Interconnection Procedures**	≤ 5MW	NYISO	
	Distribution not subject to	> 5MW	Utility	
	NYISO's OATT Interconnection Procedures	≤ 5MW	SIR	
	NYS Transmission System or	> 5MW	Utility	
Retail	Distribution subject to NYISO's OATT Interconnection Procedures	≤5MW	Utility	
	Distribution not subject to	> 5MW	Utility	
	NYISO's OATT Interconnection Procedures	≤ 5MW	SIR	

SIR Interconnection process

- Coordination of inclusion rules is critical for study work
- Projects are competing for the same interconnection points
- Interconnection procedures are not consistent
 - SIR and Utility procedures require full deliverability (NYISO procedure is a minimum interconnect standard)
- Projects may be dependent on upgrades paid for by developers in other interconnection processes
- No ability to share upgrade costs between Interconnection processes
- In many cases the same project may be venue shopping and have applied through both NYISO and Utility Procedures

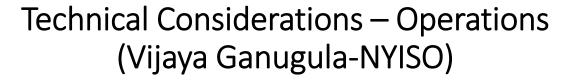


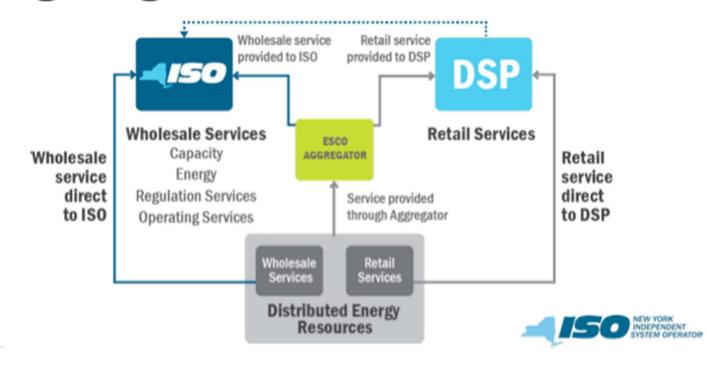
Interconnection Working Groups

Technical

- Technical barriers & new technologies
- Consultants EPRI & Pterra
- SIR screening
- Islanding Protection
- Monitoring and Control
- Voltage Flicker
- Energy Storage
- Metering Configurations

Policy

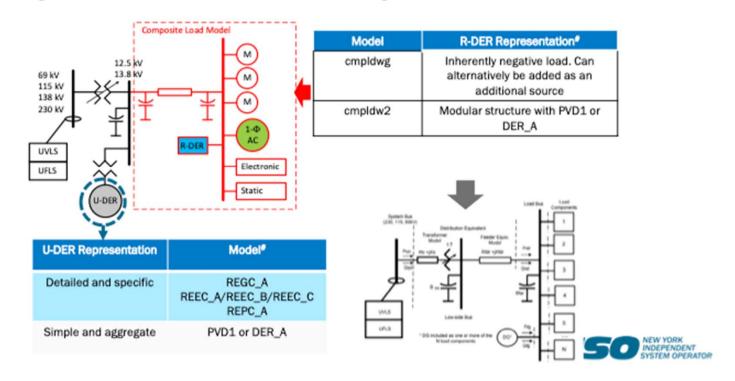

- Queue management methodology
- Communication
- Policy interpretation, timelines, and stage gates
- VDER / NEM grandfathering
- Cost allocation


Frequency and Voltage Control in systems with high DER penetration

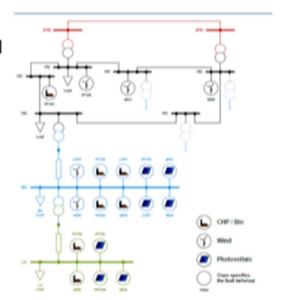

- The availability and prompt delivery of primary frequency response is critical today
- The timing of delivery will need to be quicker as the fraction of electronically coupled equipment increases
- The frequency sensitivity and voltage sensitivity of loads are as important as the characteristics of generation
- It will be necessary for electronically coupled generation to contribute primary frequency response
- The effects on frequency control of replacing rotating generation with electronically coupled DER are system wide
- The effects on voltage control of replacing direct connected equipment with electronically coupled equipment may be mainly local (but not always so)
- Proper use of primary response of electronically coupled generation can be expected to improve quality of frequency and voltage control

Integrating DER in Wholesale Markets

DER: Additional Operations' Considerations


- NYISO Operations continues to monitor and evaluate if any additional changes are required to integrate DER:
 - · Regulation requirements
 - Operating reserve requirements
 - · Geographical granularity
 - Solar PV forecasting
 - Load forecasting
 - · Behind-the-meter (non-wholesale) DER
 - Price responsive load
 - · Geographical granularity
 - Transmission security requirements
 - Voltage support requirements
 - · Black start requirements
 - Future market design efforts to incent resource flexibility and dispatchability

Representation of DER and Composite Load Model



Complex Problems of Load Modeling and DER Resources

.

- Current practices net DER with loads at the substation level
- NERC recommends avoiding the netting of DER with loads
 - This is subject to the accurate DER models available for system modeling
- All components of the system must be represented in the models, either directly or in an aggregated way, to provide meaningful and accurate simulation results

Major Workshop Conclusions

- The interconnection of DER devices is already significant and continues apace
- There are significant challenges to the successful integration of DER into the electric power system
 - Resolution of institutional, planning and operational issues for behind the meter & network DER
 - Coordination of planning & operations between the DSP & NYISO
 - Development of appropriate communication requirements, monitoring, supervisory control & standards
 - Development of market rules addressing queue inclusion, gaming & curtailment
 - Development of appropriate DER simulation tools & planning methods
 - Validated DER models for individual DER & DER aggregations
 - Development of integrated transmission & distribution system models
 - Collection of DER performance data