Memorandum

From: Roger Clayton

Re: Notes from FERC DER Technical Conference, April 11 2018

Panel 4 – Collection and availability of data on DER installations

Q1 – Type of information?

Q2 – Current data & sharing?

- APS
 - Each DER site (~80,000) is separately monitored
 - \circ Can have ~50% penetration on a feeder without operating difficulties
 - Depends upon length of feeder & DER location
- NERC
 - \circ $\;$ Need detailed steady state & stability data for modeling $\;$
- PGE
 - Need detailed data for operating distribution system
 - \circ Musk predicts 33% of peak generation to be DER penetration
- PJM
 - DER not participating in wholesale market is not required to be telemetered but can affect BPS
 - Modeling of all is required
- IESO
 - o DER visibility required
 - 20% penetration (~4000 MW)
- CAISO
 - \circ $\,$ 2017 peak load ~50,000 MW with ~7,000 MW PV & ~9,000 MW wind
 - $\circ~$ PV expected to grow from ~7,000 MW to 20,000 MW in 2027
 - PV is ~20% of light load presently
 - System operators are presently reactive with "unpredictable load and variable generation"
 - Need DER visibility, command and control specifically switching & ramp rate
- MISO
 - Data sharing between ISO, T & D not presently in place
- EPRI
 - DER must be modeled in aggregate for transmission steady state and dynamic planning studies
 - NERC DER Reliability & Modeling Guidelines are the minimum requirements
 - Netting of DER with load is to be avoided
 - Can start be collecting current DER data by size, location and type for development of aggregate models
 - German experience with 50.2 Hz over-frequency trip settings

- PJM
 - Need for real-time behind the meter data to avoid unforeseen fast load ramp up when sun goes away
- PGE
 - Have noted unusual voltage fluctuations due to PV

Q3 – DER impact on Planning & Operations

- PGE
 - Control over before the meter DER and behind the meter DER is necessary for ramping
- APS
 - 8 MW-Hr battery deferred transmission CAPEX
 - Need to include DER in planning/operating scenarios (max/min DER)
- CAISO
 - Must have frequency, voltage & ramping control
- PJM
 - o Data, data, data
- EPRI
 - DER has potential benefit to BPS
 - IEEE 1547 was published last week
 - Smart DER attributes (IEEE standards & NERC guidelines)
 - Autonomous
 - Communication capability (3 protocols)
 - Send/receive command/control

Q4 – DER Long-term projections

- PGE
 - o AMR meters at customer level gives basic planning data
 - How to incent customers?
 - o Need real-time data for reliable operations
- PJM
 - Scant data availability
 - Presently voluntary data collection
 - Behind meter DER baked into load forecast
 - Reactive operating regimen
 - Need better data projection
- MISO
 - Voluntary DER data not sufficient
 - Policy drivers informs future predictions
- APS
 - Trans planning 10 year process vs distribution planning 5 year process
 - Critical to know DER to inform trans planning
- NERC
 - DER penetration 26 GW-Hrs vs US 170 GW-hr? by 2025? Big.
- IESO
 - DER uncertainty re planning (PV & EV)

- EPRI
 - Need to know status quo to inform future predictions
 - Forecasts bottom up from status quo & top down from policy goals
 - o Germany 10 year transmission planning process is open
 - Quasi real-time power flow simulations based on real-time data to develop "heat-maps" to alert operators

Q7 – DER aggregator data

- CAISO
 - Time scale of data communications (seconds not minutes)
- PJM
 - Aggregation is required for ISO operations and markets
- IESO
 - o Communication is important from DER to local DSO to ISO

Panel 5 – Incorporating DERs in Modeling, Planning & Operations Studies

- Q1 Best practices, T&D interaction modeling
- Q2 Current DER modeling
- Q3 More detailed DER modeling
 - CAISO
 - 10 year DER predictions 7,000 MW (2017) 30,000 MW (2027) with 50,000 MW peak load (2017)
 - o 50% DER behind the meter
 - Aggregated negative load behind the meter DER
 - Generator at BPS node for before the meter DER
 - ComEd
 - DER modeled as negative load presently
 - No model of T&D interaction
 - IEEE project on smart inverter connected DER
 - NERC
 - o NERC DER Reliability & Modeling Guidelines are published
 - Individual & aggregation models are available (based upon what data?)
 - Steady state vs transient models
 - Argonne Natl lab
 - Individual modeling of T&D DER is not feasible and co-simulation T&D studies are underway
 - Therefore, must aggregate by type (dispatchable & non-dispatchable), interconnection standards (IEEE 1547 vs CAISO 21?), technology
 - T&D interaction
 - Combined MATLAB simulation
 - Individual T&D coupled simulations
 - Aggregation model
 - American Services (MISO)
 - Data requirements in real-time for operations vs future for planning
 - Case Western
 - o Data requirements function of modeling software used
 - No dynamic models are available for individual or aggregate DER
 - Utilities must verify manufacturers models
 - D is three-phase unbalanced system, T is positive sequence balanced system. Tough to integrate.
 - CAISO
 - Composite load model now includes DER PV_A model
 - Inverter modeling (frequency & voltage regulation model et al see NERC DER Modeling Guideline)
 - Etc
 - Duke
 - o Aggregated PV modeled as BPS node generator
 - Policy initiative to locate DER at best location

- EPRI
 - Transmission planning dynamic studies models
 - Before the meter DER models available and accurate
 - Behind the meter retail DER requires aggregate model like the CAISO PV_A model. Need more experience
 - Software packages (PSLF, PSS/E, ?)
 - Utility models presently exist to model before the meter DER
 - PV_A model is now available in software packages
 - Must add aggregated D feeders in steady state simulation to allow dynamic simulation to use PV_A models etc.
 - Need better modeling data to utilize these models

Q4 – Contingency Studies & DER

- CAISO
 - Aggregated DER currently not included as a N-! contingency
 - Sensitivity analysis of change of magnitude of DER examined
 - Could be tripping of DER on frequency & voltage perturbations in dynamic simulations
- DUKE
 - Aggregated DER currently not included as a N-! contingency
 - o Sensitivity analysis of change of magnitude of DER examined
- NERC
 - Consequential DER tripping must be simulated
- American Services
 - Sensitivity studies only
- ComEd
 - Need to simulate under frequency DER tripping
- EPRI
 - Planning models must evolve based upon IEEE 1547 performance standards selected by states (RTO/ISOs?)
 - Operational models should analyze loss of aggregate DER depending upon DER penetration
 - Need validated DER data
 - Standardization & certification may be required

Q5 – Balancing requirements & DER

- CAISO
 - o LSE DER survey & load forecasts used to develop 5 minute maximum ramp rate
- Duke
 - Historical DER data & load forecast to develop reserve & ramping requirements
 - Use CTs for ramping historically but looking at incorporating DER
 - \circ Economic dispatch model down to 200 KW is being developed
- Case Western
 - Problem is using DER resources for system wide ancillary service
- American Services
 - Lack of knowledge of impact of command to aggregator system wide

Panel 6 – Coordination of DER Aggregations Participating in RTO/ISO Markets

Q1 – Distribution Utility (DSO) control over DER wholesale RTO/ISO participation

- PGE
 - DSOs have a responsibility for safety & reliability and should have control over DER operations
 - I/C ~4,000 roof-top solar per month
 - DSO DER studies are complicated by their ability to reconfigure feeders
- East Kentucky Power Coop
 - Distribution feeders are not homogenous & DER can cause reliability problems
 - o DSOs need definition of settlement process with aggregator
- PJM
 - DER can connect via:
 - Normal interconnection process
 - Demand response
 - 100 kW threshold to participate in wholesale market and aggregators can make that happen
 - DSOs are involved in the normal I/C & DR process
 - Coordination is clearly needed
- SunRun
 - o DSOs should only be able to intervene if there is safety or reliability issue
 - Possible conflict of interest with DSOs who are in the DER business
 - What about the role of aggregators?
 - Should recognize benefits of DER (generation, load modifier, ancillary service)
 - DER aggregators and individual have lots of data to share with DSOs and RTO/ISOs
 - Market solutions should be allowed to define solutions
- EEI
 - How does DER affect reliability, safety & operations for the DSO
 - Need for visibility of all DER & aggregator attributes
 - Someone (DSO?) needs to have responsibility for distribution reliability & safety
- Advanced Energy Economy (DER industry group)
 - RTO receiving aggregator DER data should be provided back to DSO
 - o Coordination should be included in IC agreement
- Pacific NW Natl Lab (Jeff Taft)
 - Coordination between RTO/ISO and DSOs should be based upon functional roles & needs
 - DSO DER studies are complicated by their ability to reconfigure feeders
- Missouri PSC
 - DSO and regulator should ensure safety & reliability.
 - DSO should have sign-off authority

Q2 – Need for coordination between aggregators, DSO, TO & RTO/ISO

- PGE
 - Three parties: RTO/ISO; TO; DSO
 - Visibility, communication coordination needed
- Missouri PSC
 - One size does not fit all
- EEI
 - DSO, TO, RTO/ISO & aggregator coordination absolutely necessary
- Sunrun
 - o Open data access is desirable between all parties
- PJM
 - Presently coordinating via IC studies but should evolve with DER aggregator penetration
- East Kentucky
 - o PJM does UC & Dispatch of our generation resources
 - However, that is different from giving PJM functional control of DER on DSO feeders
 - Need for greater data visibility & coordination

Q3 - DER aggregation in RTO/ISO markets (not addressed)

Q4 – Best approach to DER aggregator retail regulatory authority

- Missouri PSC
 - State needs to be the regulator
- PJM
 - \circ $\,$ Coordination through the EDCs $\,$

Q5 – Grid architecture re DER aggregation

- Pacific NW Natl Lab
 - Meta-structure of coordination framework covers all parties
 - RTO/ISO, TO & DSO coordination not necessary pre-DER
 - Various theoretical coordination frameworks available based on roles & responsibilities of all parties (form follows function)
 - Central vs de-central communication frameworks & everything in between
 - Current electric system is a three-tier model with two boundaries
 - Coordination framework depends upon roles and responsibilities of players which will define relationships & communications
 - May alter role of DSOs to DER/Load entities
- FERC Commissioner Chaterjee
 - Should architecture be defined by FERC
- East Kentucky
 - Need clearly defined settlement process

Panel 7 – Ongoing Operational Coordination

Q1 – Real-time data acquisition & communication technologies

- EPRI
 - TO & DSO SCADA/RTU systems are presently available
 - GMI is also available
 - Distributed Energy Resource M? (DERM) platform to translate various communication protocols
- Open Access Tech
 - SCADA telemetry is old may not be effective for real-time DER command and control
 - New technologies are fast, secure and cost effective re traditional methods
- Kristov (ex-CAISO)
 - Electric services covering DER/load aggregation are going to be behind the meter services
- Miscrosoft
 - Digitization & scalability are new requirements at DSO level enabling DER utilization
 - MS can help with cloud computing etc.
- Open Access Tech
 - Application of new technologies is going to be required with increasing DER penetration
- ConEd & Joint Utilities
 - Visibility & communication from DER aggregators are not presently available & are required

Q2 – What processes do DSO, TO, RTO/ISO & aggregators need for coordination

- ConEd & Joint Utilities
 - Presently using phone & email & needs new real time systems
 - NY is developing pilot programs to explore needs
- Kristov
 - No data available to aggregators on feeder performance
 - o DSOs need to decide on their future business model which will inform processes
- SCE
 - Business rules question
 - Can't define coordination processes without defining operating framework (boundary conditions, market rules, system architecture)
 - Federal & State jurisdictional overlap
 - Distribution & Transmission are attaining parity in terms of importance in operating the power system based on DER penetration

Q3 – Minimum set of RTO/ISO protocols, standards & market rules

- Kristov
 - DER outage and derates responsibility of aggregator need to be automated
 - DSOs are going to have new functional responsibilities

- Open Access Tech
 - We should look at lessons learned from OASIS e.g. electronic tagging
- PJM
 - \circ $\;$ Jurisdiction for DER wheeling $\;$
- EPRI
 - o Should not be prescriptive regarding protocols like communication standards

Q4 – Should DSOs be able to override RTO/ISO decisions

- ConEd
 - Yes, in emergencies, coordination needed
- EPRI
 - Yes, for safety & reliability
 - Closest controller has precedence
- Open Access Tech
 - Yes but must have formal rules for curtailment
- Kristov
 - Yes but need transparency & rules
- SCE
 - o Yes
 - Function of IC scope of study process, technology application (modernization of grid) & explosion of number of elements (scale)
 - May need to change reliability standards to accommodate DER
- PJM
 - Yes, must be fair & equitable
 - Need market rules to cover emergencies

Q5 – Can DER or aggregated DER improve DSO operations and reliability

- SCE
 - Yes, depending upon DER objective
- Microsoft
 - o DSO support with on-site resources at data center
- Kristov
 - Multi-use applications are possible
 - Off-setting DSO asset reinforcement

Q8 – Integration of DER aggregation into EMS & DMS

- Open Access Tech
 - Integrate DER EMS into existing EMS
 - Topology plus DSO data will be required to model real time power flows/voltages
- Microsoft
 - Integrating learning processes into EMS
 - Market signal is important
- ConEd
 - Large expenditure in EMS/DMS is required
 - o Must ensure value added to facilitate development