2021-2030 CRP Kevin DePugh – Sr. Manager, Reliability Planning Laura Popa – Manager, Resource Planning Keith Burrell – Manager, Transmission Studies **ESPWG/TPAS** August 18, 2021 ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **Agenda** - RNA and CRP Conclusions - Road to 2040 - Resource Adequacy Metrics/Scenarios - Transmission Studies Scenarios # RNA and Post-RNA Conclusions New York ISO © COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED. DRAFT - FOR DISCUSSION PURPOSES ONLY ### Post-RNA Base Case Key Updates - The load forecast update, as presented at the November 19, 2020 ESPWG/TPAS/LFTF meeting [link] - Specifically, Zone J peak load forecast decreased by 392 MW in 2030 - LTP updates as presented by Con Edison at the January 25, 2021 ESPWG/TPAS [link]: - A new 345/138 kV PAR controlled 138 kV Rainey Corona feeder - A new 345/138 kV PAR controlled 138 kV Gowanus Greenwood feeder - A new 345/138 kV PAR controlled 138 kV Goethals Fox Hills feeder - STRP solution for addressing the 2023 short-term need [link] - Series Reactors status changes, starting summer 2023, through 2030: - Placing in service the SR on the following 345 kV cables: 71, 72, M51, M52 - Bypassing the SR on the following 345 kV cables: 41, 42, Y49 #### **Post-RNA Conclusions** - All resource adequacy and transmission security Reliability Needs are resolved - No need to solicit for solutions ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY - ## Road to 2040 #### Road to 2040: Load #### Key takeaways - Climate change will result in a significant increase in summer load - CLCPA electrification is expected to cause the NYCA to transition from summer peaking to winter peaking - The winter peak load under the CLCPA case is expected to be double compared to the reference case ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### Road to 2040: Generation #### Key takeaways - A system with significant amounts of intermittent resources will need significant amounts of dispatchable resources that can run for multiple day periods - Due to the characteristics of sun and wind resources, there will be high ramping requirements needed from the dispatchable resources - A 100% CO₂ emission-free system by 2040 (100 x 40) system will require those dispatchable resources to be emission free - Dispatchable resources that are emissions free and on the scale needed are not yet tested or proposed in the NYISO interconnection queue #### Road to 2040: Transmission #### Key takeaways - More inter- and intra- zonal transmission capacity will be required to deliver a reliable bulk power system with a high renewable penetration - Transmission additions would not reduce the amount of dispatchable resource capacity needed, but would decrease the amount of energy output needed from them ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY # Resource Adequacy Metrics/Scenarios # RNA and CRP Base Cases Resource Adequacy Results | CRP Base Case | e - NYCA Relial | oility Metrics | | |---------------|-----------------|-----------------|------------------| | Study Year | LOLE
(dy/yr) | LOLH
(hr/yr) | LOEE
(MWh/yr) | | 2021 | 0.017 | 0.064 | 35.3 | | 2022 | 0.017 | 0.055 | 26.6 | | 2023 | 0.034 | 0.106 | 50.8 | | 2024 | 0.024 | 0.083 | 47.2 | | 2025 | 0.036 | 0.118 | 69.3 | | 2026 | 0.038 | 0.131 | 83.7 | | 2027 | 0.040 | 0.139 | 93.2 | | 2028 | 0.047 | 0.146 | 83.4 | | 2029 | 0.060 | 0.199 | 137.2 | | 2030 | 0.064 | 0.212 | 156.2 | Loss of Load Expectation (LOLE in days/year) - the expected number of days in a given time period (e.g. one study year) when at least one hour from that day the hourly demand is projected to exceed the zonal resources capacity. NYSRC and NPCC's LOLE criterion is to not exceed one day in 10 years, or LOLE < 0.1 days/year. For information only (there is no criterion defined at this time): - Loss of load hours (LOLH in hours/year) the expected number of hours in a given time period (e.g., one study year) when a system's hourly demand is projected to exceed the zonal resources capacity. - Expected unserved energy (EUE in MWh/year), or loss of energy expectation (LOEE) - the expected amount of energy (MWh) that will not be served in a given year. ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **CRP Base Case** #### **Zonal Resource Adequacy Margin (ZRAM)** | Study Year | LOLE | Zone A | Zone B | Zone C | Zone D | Zone E | Zone F | Zone G | Zone H | Zone I | Zone J | Zone K | |------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 2024 | 0.02 | -950 | EZR | -1850 | -1800 | EZR | -1850 | -1850 | EZR | EZR | -750 | -1350 | | 2025 | 0.04 | -1000 | EZR | -1550 | -1550 | EZR | -1550 | -1550 | EZR | EZR | -500 | -1200 | | 2026 | 0.04 | -950 | EZR | -1500 | -1500 | EZR | -1450 | -1500 | EZR | EZR | -500 | -1250 | | 2027 | 0.04 | -850 | EZR | -1400 | -1400 | EZR | -1400 | -1400 | EZR | EZR | -400 | -1250 | | 2028 | 0.05 | -900 | EZR | -1300 | -1250 | EZR | -1300 | -1300 | EZR | EZR | -350 | -1150 | | 2029 | 0.06 | -750 | -750 | -950 | -950 | -950 | -950 | -950 | EZR | EZR | -250 | -1000 | | 2030 | 0.06 | -700 | -700 | -800 | -800 | -800 | -800 | -800 | EZR | EZR | -200 | -850 | #### Notes: - Negative numbers indicate the amount of MW that can be removed from a zone without causing a violation - EZR exceeds zonal resources (all generation can be removed without causing a violation) - The generation pockets in Zone J and Zone K are not modeled in detail in MARS and the values identified here may be larger as a result # **CRP Base Case**Free Flow Simulations | | 20 | 2020 RNA Post-RNA Base Case
NYCA LOLE (days/year) | | | | | | | | | | |------------|---|--|---|-----------------------------------|--|--|--|--|--|--|--| | Study Year | With all three updates (i.e., Load, ConEd LTP, Series Reactor status) | Unlimited
I_to_J
(Dunwoodie
South) | Unlimited
G_to_H
(UPNY-
ConEd) | Unlimited
G_to_H
and I_to_J | | | | | | | | | 2024 | 0.024 | 0.021 | 0.024 | 0.021 | | | | | | | | | 2025 | 0.036 | 0.027 | 0.035 | 0.025 | | | | | | | | | 2026 | 0.038 | 0.029 | 0.038 | 0.028 | | | | | | | | | 2027 | 0.040 | 0.028 | 0.039 | 0.026 | | | | | | | | | 2028 | 0.047 | 0.034 | 0.046 | 0.030 | | | | | | | | | 2029 | 0.060 | 0.043 | 0.059 | 0.037 | | | | | | | | | 2030 | 0.064 | 0.045 | 0.063 | 0.035 | | | | | | | | - In order to determine whether or not a specific MARS interface impacts LOLE, free-flow simulations were also performed - Interface limit set to a high MW value - LOLE impact is an indication of interface 'binding' - The NYCA LOLE results show that: - I_to_J (Dunwoodie South) interface has a significant LOLE impact (i.e., it is 'binding'), - G_to_H (UPNY-ConEd) has low LOLE impact due to the fact that most of the LOLE events are in Zone J, and the I-to-J interface 'binds' first ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 13 # Resource Adequacy Wind Lull Scenario #### MARS: Not a "dispatch" model #### Not a "dispatch" model Rather a "bucket of available zonal MW" probabilistically sampled for each hour of the study year, and compared with each of the seven zonal load levels to identify zonal margins or deficiencies (events) #### The MARS simulations do not take into consideration potential reliability impacts due to: - Unit commitment and dispatch, ramp rate constraints, and other production cost modeling techniques - Intra-zonal constraints on the transmission system - Development of models for 70% renewable energy by 2030 ("70 x 30"): changes on the transmission system as a result of the resource additions (renewable mix) or subtractions (age-based) ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY New York ISO #### Renewable Mix by NYCA Zone Zonal Renewable Mix (Nameplate MW) 70x30 'Base Load Case' | Zone/Type | osw | LBW | UPV | BTM-PV | |-----------|-------|-------|--------|--------| | Α | | 2,286 | 4,432 | 995 | | В | | 314 | 505 | 298 | | С | | 2,411 | 2,765 | 836 | | D | | 1,762 | | 76 | | E | | 2,000 | 1,747 | 901 | | F | | | 3,592 | 1,131 | | G | | | 2,032 | 961 | | Н | | | | 89 | | I | | | | 130 | | J | 4,320 | | | 950 | | К | 1,778 | | 77 | 1,176 | | Total | 6,098 | 8,772 | 15,150 | 7,542 | Zonal Renewable Mix (Nameplate MW) 70x30 'Scenario Load Case' | Zone/Type | osw | LBW | UPV | BTM-PV | |-----------|-------|-------|--------|--------| | Α | | 1,640 | 3,162 | 995 | | В | | 207 | 361 | 298 | | С | | 1,765 | 1,972 | 836 | | D | | 1,383 | | 76 | | Е | | 1,482 | 1,247 | 901 | | F | | | 2,563 | 1,131 | | G | | | 1,450 | 961 | | Н | | | | 89 | | 1 | | | | 130 | | J | 4,320 | | | 950 | | К | 1,778 | | 77 | 1,176 | | Total | 6,098 | 6,477 | 10,832 | 7,542 | New York ISO #### 70x30 - Cases At-Criterion and at Low LOLE #### 70x30 Base Load Case at-Criterion: Age-based Fossil Removal | | | Total | Thermal (| Capacity (| MW) | Cumulat | | | | | |---|---------|--------|-----------|------------|--------|---------|--------|-------|-------|------| | | Cases | Zone J | Zone K | Other | Total | Zone J | Zone K | Other | Total | NYCA | | (| Age >=) | | | Zones | | | | Zones | | LOLE | | | Total | 8,190 | 3,962 | 15,012 | 27,165 | 0 | 0 | 0 | 0 | 0.00 | | | 70 | 6,978 | 3,564 | 14,616 | 25,160 | 1,212 | 398 | 396 | 2,005 | 0.02 | | Г | 68 | 6,601 | 3,371 | 14,616 | 24,590 | 1,589 | 591 | 396 | 2,575 | 0.05 | | | 67* | 6,386 | 3,360 | 14,616 | 24,364 | 1,804 | 602 | 396 | 2,801 | 0.11 | | | 67 | 6,236 | 3,360 | 14,616 | 24,214 | 1,954 | 602 | 396 | 2,951 | 0.15 | #### 70x30 Scenario Load Case at-Criterion: Age-based Fossil Removal | | Total | Thermal (| Capacity (| MW) | Cumulat | | | | | |----------|--------|-----------|------------|--------|---------|--------|-------|--------|------| | Cases | Zone J | Zone K | Other | Total | Zone J | Zone K | Other | Total | NYCA | | (Age >=) | | | Zones | | | | Zones | | LOLE | | Total | 8,190 | 3,962 | 15,012 | 27,165 | 0 | 0 | 0 | 0 | 0 | | 50 | 4,354 | 1,541 | 11,228 | 17,124 | 3,836 | 2421 | 3784 | 10,041 | 0.03 | | 40 | 4,354 | 1,393 | 10,247 | 15,995 | 3,836 | 2569 | 4765 | 11,170 | 0.07 | | 39 | 4,354 | 1,349 | 10,197 | 15,901 | 3,836 | 2613 | 4815 | 11,264 | 0.09 | | 38 | 3,563 | 1,325 | 9,935 | 14,824 | 4,627 | 2637 | 5077 | 12,341 | 0.11 | ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 4- #### Scenario Scope: NYCA-Wide Weekly Wind Lull Events All NYCA zones events: The following types of analysis and events are simulated over each of the 3 MARS models described above. - Highest % of NYCA LOLE events: - Identify the top 2 weeks with highest % of NYCA LOLE events - For each of the top 2 weeks (one week at the time) having highest % of LOLE events, simulate total loss of NYCA wind (O MW all NYCA zones) for that entire week and calculate NYCA LOLE, LOLH, and EUE. - Compute compensatory MW to bring LOLE close to the initial case - Top 2 weeks with highest land-based wind ("LBW") capacity factor: - · Identify the top 2 weeks with highest land based wind capacity factors - On each of the top 2 weeks (one week at the time) simulate total loss of NYCA wind (0 MW) for that entire week and calculate NYCA LOLE, LOLH, and EUE. - Compute compensatory MW to bring LOLE close to the initial case - Top 2 weeks with highest offshore wind ("OSW") capacity factor: - Identify the top 2 weeks with highest offshore wind capacity factors - On each of the top 2 weeks (one week at the time) simulate total loss of NYCA wind (0 MW) for that entire week and calculate NYCA LOLE, LOLH, and EUE - · Compute compensatory MW to bring LOLE close to the initial case - Note: the wind lull weeks assume that all land-based or all offshore wind (but not both) have no output to the system for the whole week and then recover to normal output levels for the following week ## 70x30 - LBW Wind Lull Analysis Loss of LBW during the Week with Highest LBW Capacity Factor | No LBW during the 1st Highest LBW Capacity Factor | r (CF) Week | | | | С | ompensatory M | N | |---------------------------------------------------|-------------|--------------|----------------|------------|-----------|---------------|--------| | Model | LBW CF | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 23% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-criterion | 23% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-low-LOLE | 23% | 0.03 | 0.03 | 0.00 | <25 | <25 | <25 | | | | | | | | | | | No LBW during the 2nd Highest LBW Capacity Fact | or Week | | | | C | ompensatory M | N | | Model | LBW CF | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 20% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-criterion | 20% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-low-LOLE | 20% | 0.03 | 0.03 | 0.00 | <25 | <25 | <25 | Key takeaway: Not much impact as the land-based wind is distributed in A through E Zones, while resource deficiencies are in J and K ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 10 ## 70x30 - LBW Wind Lull Analysis NYCA LOLE (days/year) for Loss of LBW during the Week with Highest LOLE Events | No LBW during the 1st Highest NYCA Event % | Week | | | | C | ompensatory M | N | |--------------------------------------------|----------------|--------------|----------------|------------|-----------|---------------|--------| | Model | Event % | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 34% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-criterion | 23% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-low-LOLE | 24% | 0.03 | 0.03 | 0.00 | <25 | <25 | <25 | | No Land-Based Wind during the 2nd Highest | NYCA Event % W | eek | | | С | ompensatory M | N | | Model | Event % | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 19% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-criterion | 18% | 0.11 | 0.11 | 0.00 | <25 | <25 | <25 | | 70x30 'Scenario Load' at-low-LOLE | 18% | 0.03 | 0.03 | 0.00 | <25 | <25 | <25 | | | | | | | | | | Key takeaway: Not much impact to LOLE as the land-based wind is distributed in Zones A through E, while resource deficiencies are in Zones J and K New York ISO #### 70x30 - OSW Wind Lull Analysis Loss of OSW during the Week with Highest OSW Capacity Factor | _ | | _ | | | | | | | |--------------------------------------------------------|--------|--------------|----------------|------------|-----------------|---------------|--------|--| | No OSW during the 1st Highest OSW Capacity Factor Week | | | | | Compensatory MW | | | | | Model | OSW CF | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | | 70x30 'Base Load' at-criterion | 41% | 0.11 | 0.26 | 0.16 | ∞ | 350 | 000 | | | 70x30 'Scenario Load' at-criterion | 41% | 0.11 | 0.22 | 0.11 | ∞ | ∞ | 150 | | | 70x30 'Scenario Load' at-low-LOLE | 41% | 0.03 | 0.06 | 0.03 | ∞ | ∞ | 150 | | | | | | | | | | | | | No OSW during the 2nd Highest OSW Capacity Factor Week | | | | | С | ompensatory M | N | | | Model | OSW CF | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | | 70x30 'Base Load' at-criterion | 32% | 0.11 | 0.14 | 0.04 | ∞ | 100 | ∞ | | | 70x30 'Scenario Load' at-criterion | 32% | 0.11 | 0.47 | 0.36 | ∞ | ∞ | 400 | | | 70x30 'Scenario Load' at-low-LOLE | 32% | 0.03 | 0.16 | 0.13 | 8 | ∞ | 350 | | | | | | | | | | | | $[\]infty$ - Either a large, or no amount of capacity added in the zone can bring NYCA LOLE below 0.1 Outage of all offshore wind generation has a substantial impact on LOLE. This is largely due to the co-location of offshore wind together with the majority of the resource deficiencies in Zones J and K ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 21 # OSW MW Output During the Week with Highest Capacity Factor New York ISO ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 22 ## **OSW MW Output During the Week with** Highest % Events - 70x30 'Base Load' Cases ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **OSW MW Output During the Week with Highest %** Events - 70x30 'Scenario Load' and "Low LOLE" Cases #### 70x30 - OSW Wind Lull Analysis Loss of OSW during the Week with Highest LOLE Events | No OSW during the 1st Highest NYCA Event % Week | | | | С | ompensatory M\ | N | |-------------------------------------------------|--------------|----------------|------------|-----------|----------------|--------| | Model | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 0.11 | 0.18 | 0.07 | 8 | 200 | ∞ | | 70x30 'Scenario Load' at-criterion | 0.11 | 0.22 | 0.11 | 00 | ∞ | 150 | | 70x30 'Scenario Load' at-low-LOLE | 0.03 | 0.06 | 0.03 | ∞ | 8 | 150 | | No OSW during the 2nd Highest NYCA Event % Week | | | | С | ompensatory M\ | N | | Model | Initial LOLE | Resultant LOLE | Delta LOLE | Zones A-I | Zone J | Zone K | | 70x30 'Base Load' at-criterion | 0.11 | 0.11 | 0.01 | 00 | 150 | ∞ | | 70x30 'Scenario Load' at-criterion | 0.11 | 0.13 | 0.02 | 8 | 8 | 50 | | 70x30 'Scenario Load' at-low-LOLE | 0.03 | 0.03 | 0.00 | 00 | 00 | 25 | ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **OSW Lull Scenario Observations** - Outage of all offshore wind generation for the studied week has a substantial impact on NYCA LOLE. This is largely due to the location of the offshore wind in the J and K Zones, where the majority of the NYCA LOLE events occur - There is a higher impact in the NYCA LOLE for the "Scenario Load" case (i.e., a lower energy case), which had a higher MW of fossil removed (i.e., around 12,340 MW fossil removed, as identified in the 2020 RNA Report) in order to bring it to the 0.1 day/year criterion ("at criterion") - Using yearly compensatory MW (i.e., 'perfect capacity MW' available every hour of the study year) to bring the NYCA LOLE back to the levels found in the original cases reduces the resultant LOLH, but increases EUE. This is because smaller events are mitigated by the "perfect" compensatory MW, but the large events that are created by the wind lull create a larger energy deficit during that week - Note: Annual compensatory MW values are reducing LOLE at other times of the year, not just during the week affected by the wind Iull # **Transmission Security** New York ISO © COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED. **DRAFT - FOR DISCUSSION PURPOSES ONLY** ## **Tipping Points** #### NYCA Summer Baseline Peak Forecast - Normal | | | | | | | Peak Load | Forecast | | | | | |------|---------------------------------------------------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------| | Line | ltem | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | Α | NYCA Generation (1) | 35,257 | 34,307 | 34,297 | 33,684 | 33,679 | 33,679 | 33,674 | 33,669 | 33,664 | 33,659 | | В | External Area Interchanges (2) | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | | С | Temperature Based Generation Derates | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D | Total Resources (A+B+C) | 37,101 | 36,151 | 36,141 | 35,528 | 35,523 | 35,523 | 35,518 | 35,513 | 35,508 | 35,503 | | | | | | | | | | | | | | | E | Load Forecast | (32,178) | (31,910) | (31,641) | (31,470) | (31,326) | (31,278) | (31,284) | (31,348) | (31,453) | (31,565) | | F | Operating Reserve Requirement | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | | G | Total Capability Requirement (E+F) | (34,798) | (34,530) | (34,261) | (34,090) | (33,946) | (33,898) | (33,904) | (33,968) | (34,073) | (34,185) | | | | | | | | | | | | | | | Н | Transmission Security Margin (D+G) | 2,303 | 1,621 | 1,880 | 1,438 | 1,577 | 1,625 | 1,614 | 1,545 | 1,435 | 1,318 | | T I | SCRs | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | | J | Forced Outages (3) | (2,164) | (1,952) | (1,952) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | | K | Adjusted Transmission Security Margin (H+I+J) (4) | 1,334 | 864 | 1,123 | 766 | 905 | 953 | 942 | 873 | 763 | 646 | #### Notes: - 1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit of for all lines in-service. - 2. Interchanges are based on ERAG MMWG values. - 3. Includes de-rates for thermal resources. - Special Case Resources (SCRs) are not applied for transmission security analysis of normal operations. #### NYCA Summer 1-in-10 (90/10) Peak Forecast - Emergency | | | 90th Percentile Forecast | | | | | | | | | | |------|---------------------------------------------|--------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Line | ltem | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | Α | NYCA Generation (1) | 35,257 | 34,307 | 34,297 | 33,684 | 33,679 | 33,679 | 33,674 | 33,669 | 33,664 | 33,659 | | В | External Area Interchanges (2) | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | | С | SCRs (4) | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | | D | Temperature Based Generation Derates | (208) | (195) | (195) | (185) | (185) | (185) | (185) | (185) | (185) | (185) | | E | Total Resources (A+B+C+D) | 38,088 | 37,151 | 37,141 | 36,537 | 36,532 | 36,532 | 36,527 | 36,522 | 36,517 | 36,512 | | | | | | | | | | | | | | | F | Load Forecast | (34,158) | (33,871) | (33,582) | (33,399) | (33,246) | (33,191) | (33,195) | (33,262) | (33,373) | (33,490) | | G | Operating Reserve Requirement | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | | Н | Total Capability Requirement (F+G) | (36,778) | (36,491) | (36,202) | (36,019) | (35,866) | (35,811) | (35,815) | (35,882) | (35,993) | (36,110) | | | | | | | | | | | | | | | İ | Transmission Security Margin (E+H) | 1,310 | 660 | 939 | 518 | 666 | 721 | 712 | 640 | 524 | 402 | | J | Forced Outages (3) | (2,164) | (1,952) | (1,952) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | | K | Adjusted Transmission Security Margin (I+J) | (854) | (1,292) | (1,013) | (1,349) | (1,201) | (1,146) | (1,155) | (1,227) | (1,343) | (1,465) | 1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit of for all lines in-service. - 2. Interchanges are based on ERAG MMWG values. - 3. Includes de-rates for thermal resources. - 4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations. ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **Tipping Points** #### NYCA Summer 1-in-100 Peak Forecast - Emergency | | | | | | _ | - | | | | | | |-------|---------------------------------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | | 1 in 100 Forecast | | | | | | | | | | | Line | ltem | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | Α | NYCA Generation (1) | 35,257 | 34,307 | 34,297 | 33,684 | 33,679 | 33,679 | 33,674 | 33,669 | 33,664 | 33,659 | | В | External Area Interchanges (2) | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | 1,844 | | С | SCRs (4) | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | 1,195 | | D | Temperature Based Generation Derates | (437) | (410) | (410) | (390) | (390) | (390) | (390) | (390) | (390) | (390) | | E | Total Resources (A+B+C+D) | 37,859 | 36,936 | 36,926 | 36,332 | 36,327 | 36,327 | 36,322 | 36,317 | 36,312 | 36,307 | | | | | | | | | | | | | | | F | Load Forecast | (35,870) | (35,569) | (35,264) | (35,073) | (34,909) | (34,852) | (34,856) | (34,924) | (35,039) | (35,164) | | G | Operating Reserve Requirement | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | (2,620) | | Н | Total Capability Requirement (F+G) | (38,490) | (38,189) | (37,884) | (37,693) | (37,529) | (37,472) | (37,476) | (37,544) | (37,659) | (37,784) | | | | | | | | | | | | | | | 1 | Transmission Security Margin (E+H) | (631) | (1,253) | (958) | (1,361) | (1,202) | (1,145) | (1,154) | (1,227) | (1,347) | (1,477) | | J | Forced Outages (3) | (2,164) | (1,952) | (1,952) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | (1,867) | | K | Adjusted Transmission Security Margin (I+J) | (2,795) | (3,205) | (2,910) | (3,228) | (3,069) | (3,012) | (3,021) | (3,094) | (3,214) | (3,344) | | Motos | | | | | | | | | | | | 1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit of for all lines in-service. - 2. Interchanges are based on ERAG MMWG values. - Included de-rates for thermal resources. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations. New York ISO ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY ## **Tipping Points** #### Zone J Summer Baseline Peak Forecast - Normal | Peak Load Forecast (L/O Ravenswood 3 & Mott Haven - Rainey 345 kV (Q12)) | | | | | | | | | | |--------------------------------------------------------------------------|---------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--| | Line | Item | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | | Α | Zone J Load Forecast | (11,029) | (11,031) | (11,082) | (11,151) | (11,232) | (11,308) | (11,381) | | | | | | | | | | | | | | В | I+K to J | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | | | С | ABC PARs to J | (11) | (11) | (11) | (11) | (11) | (11) | (11) | | | D | Total J AC Import (B+C) | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | | | | | | | | | | | | | | E | Loss of Source Contingency | (980) | (980) | (980) | (980) | (980) | (980) | (980) | | | F | Resource Need (A+D+E) | (8,116) | (8,118) | (8,169) | (8,238) | (8,319) | (8,395) | (8,468) | | | G | Resources needed after N-1-1 (A+D) | (7,136) | (7,138) | (7,189) | (7,258) | (7,339) | (7,415) | (7,488) | | | | | | | | | | | | | | Н | J Generation (1) | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | | | - 1 | Temperature Based Generation Derates (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | J | Net ICAP External Imports | 315 | 315 | 315 | 315 | 315 | 315 | 315 | | | K | Total Resources Available (H+I+J) | 8,510 | 8,510 | 8,510 | 8,510 | 8,510 | 8,510 | 8,510 | | | L | Resources available after N-1-1 (E+L) | 7,530 | 7,530 | 7,530 | 7,530 | 7,530 | 7,530 | 7,530 | | | | | | | | | | | | | | М | Transmission Security Margin (F+K) | 394 | 392 | 341 | 272 | 191 | 115 | 42 | | | N | SCRs (3) | 428 | 428 | 428 | 428 | 428 | 428 | 428 | | | 0 | Forced Outages (2) | (515) | (515) | (515) | (515) | (515) | (515) | (515) | | | Р | Adjusted Transmission Security Margin (M+N+O) (3) | 307 | 305 | 254 | 185 | 104 | 28 | (45) | | ^{1.} Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-fiver hydro is included as well as the Oswego Export limit of for all lines in-service. 2. Inloudes de-rates for thermal resources. 3. Special Case Resources (SCRs) are not applied for transmission security analysis of normal operations. #### Zone J Summer 1-in-10 (90/10) Peak Forecast - Emergency | | 90th Percentile Load Forecast (L/O Ravenswood 3 & Mott Haven - Rainey 345 kV (Q12)) | | | | | | | | | | |------|-------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--| | Line | Item | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | | | Α | Zone J Load Forecast | (11,486) | (11,488) | (11,541) | (11,613) | (11,697) | (11,777) | (11,853) | | | | | | | | | | | | | | | | В | I+K to J | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | | | | С | ABC PARs to J | (11) | (11) | (11) | (11) | (11) | (11) | (11) | | | | D | Total J AC Import (B+C) | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | | | | | | | | | | | | | | | | E | Loss of Source Contingency | (980) | (980) | (980) | (980) | (980) | (980) | (980) | | | | F | Resource Need (A+D+E) | (8,573) | (8,575) | (8,628) | (8,700) | (8,784) | (8,864) | (8,940) | | | | G | Resources needed after N-1-1 (A+D) | (7,593) | (7,595) | (7,648) | (7,720) | (7,804) | (7,884) | (7,960) | | | | | | | | | | | | | | | | Η | J Generation (1) | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | | | | _ | Temperature Based Generation Derates | (52) | (52) | (52) | (52) | (52) | (52) | (52) | | | | ٦ | Net ICAP External Imports | 315 | 315 | 315 | 315 | 315 | 315 | 315 | | | | K | SCRs (3) | 428 | 428 | 428 | 428 | 428 | 428 | 428 | | | | L | Total Resources Available (H+I+J+K) | 8,886 | 8,886 | 8,886 | 8,886 | 8,886 | 8,886 | 8,886 | | | | М | Resources available after N-1-1 (E+L) | 7,906 | 7,906 | 7,906 | 7,906 | 7,906 | 7,906 | 7,906 | | | | | | | | | | | | | | | | N | Transmission Security Margin (F+L) | 313 | 311 | 258 | 186 | 102 | 22 | (54) | | | | 0 | Forced Outages (2) | (515) | (515) | (515) | (515) | (515) | (515) | (515) | | | | Р | Adjusted Transmission Security Margin (N+O) | (202) | (204) | (257) | (329) | (413) | (493) | (569) | | | New York ISO ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY #### **Tipping Points** #### Zone J Summer 1-in-100 Peak Forecast - Emergency | | 1 in 100 Forecast (L/O Ravenswood 3 & Mott Haven - Rainey 345 kV (Q12)) | | | | | | | | | | |------|-------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--| | Line | Item | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | | | Α | Zone J Load Forecast | (11,974) | (11,976) | (12,031) | (12,106) | (12,194) | (12,276) | (12,356) | | | | | | | | | | | | | | | | В | I+K to J | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | 3,904 | | | | С | ABC PARs to J | (11) | (11) | (11) | (11) | (11) | (11) | (11) | | | | D | Total J AC Import (B+C) | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | 3,893 | | | | | | | | | | | | | | | | E | Loss of Source Contingency | (980) | (980) | (980) | (980) | (980) | (980) | (980) | | | | F | Resource Need (A+D+E) | (9,061) | (9,063) | (9,118) | (9,193) | (9,281) | (9,363) | (9,443) | | | | G | Resources needed after N-1-1 (A+D) | (8,081) | (8,083) | (8,138) | (8,213) | (8,301) | (8,383) | (8,463) | | | | | | | | | | | | | | | | Н | J Generation (1) | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | 8,195 | | | | - 1 | Temperature Based Generation Derates | (110) | (110) | (110) | (110) | (110) | (110) | (110) | | | | J | Net ICAP External Imports | 315 | 315 | 315 | 315 | 315 | 315 | 315 | | | | K | SCRs (3) | 428 | 428 | 428 | 428 | 428 | 428 | 428 | | | | L | Total Resources Available (H+I+J+K) | 8,828 | 8,828 | 8,828 | 8,828 | 8,828 | 8,828 | 8,828 | | | | М | Resources available after N-1-1 (E+L) | 7,848 | 7,848 | 7,848 | 7,848 | 7,848 | 7,848 | 7,848 | | | | | | | | | | | | | | | | N | Transmission Security Margin (F+L) | (233) | (235) | (290) | (365) | (453) | (535) | (615) | | | | 0 | Forced Outages (2) | (515) | (515) | (515) | (515) | (515) | (515) | (515) | | | | P | Adjusted Transmission Security Margin (N+O) | (748) | (750) | (805) | (880) | (968) | (1,050) | (1,130) | | | Notes: 1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit of for all lines in-service. ^{2.} Inlcudes de-rates for thermal resources. ^{3.} SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations ^{1.} Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit of for all lines in-service. ^{3.} SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 35 ### 70x30 Dynamic Analysis - Evaluated under the system conditions shown in the figure below for both N-1 and N-1-1 - · No dynamic stability issues were observed | Case # | Case Load (Net load including BtM solar reductions, MW) | Land Based Wind | Off-Shore Wind | Solar | |--------|-------------------------------------------------------------|-----------------|----------------|-------------| | Case # | Case Load (Net load including blivi solar reductions, NIVV) | (% of Pmax) | (% of Pmax) | (% of Pmax) | | 1 | Day Peak Load (30,000) | 10 | 20 | 45 | | 2 | Evening Peak Load (31,100) | 0 | 0 | 0 | | 3 | Light Load (12,500) | 15 | 45 | 0 | | 4 | Light Load (12,500) | 0 | 0 | 0 | | 5 | Shoulder Load (21,500) | 0 | 0 | 40 | | 6 | Shoulder Load (21,500) | 15 | 45 | 40 | Also performed evaluations for the sudden loss of all OSW at the conditions shown in the figure above as well as with OSW at 100% of its capabilities (details on the following slides) ## 70x30 Analysis: OSW at 100% Sudden Loss of OSW – Farragut Voltage Case 1-Peak, Case 3-Light Load, Case 6-Shoulder New York ISO ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY ## 70x30 Analysis: OSW at 100%; System Frequency Response and NYCA Generation Response for the Loss of Offshore Wind - Case 3 (Light Load) en New York ISO ## 70x30 Analysis: Short-Circuit Ratio The figure shown here highlights the buses with low short circuit ratio where intensity is inversely proportional to the short-circuit ratio. Short-circuit ratio is defined as the ratio of short-circuit apparent power (SCMVA) at the point of interconnection (POI) from a 3-phase fault at the POI to the power rating of the resource. $$SCR_{POI} = \frac{SCMVA_{POI}}{MW}$$ New York ISO ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 39 ## 70x30 Analysis: Voltage Flicker #### Peak Load Flicker The figure shown here highlights the buses more susceptible to flicker. In the plot scale, a 0 represents no change in per-unit voltage and a 1 represents at 0.03 per-unit voltage decline e New York ISO ## **Schedule** © COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED. DRAFT - FOR DISCUSSION PURPOSES ONLY ### **Next Steps: Target Dates** September/October: ESPWG/TPAS review October: OC and MC review and vote November: NYISO Board of Directors action ## Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by: - · Maintaining and enhancing regional reliability - Operating open, fair and competitive wholesale electricity markets - · Planning the power system for the future - Providing factual information to policymakers, stakeholders and investors in the power system ©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED DRAFT - FOR DISCUSSION PURPOSES ONLY 43 # **Questions?**