Attachment #4.1.3
Return to Agenda

NYCA IRM Requirement Study 2024-2025 Final Base Case (FBC) Model Assumptions Matrix

Draft V1.2

NYSRC

Installed Capacity Subcommittee Meeting #281

October 04, 2023

Load Forecast

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change	
1	Peak Load Forecast (Preliminary Base Case – Parametric & Sensitivities)	2022 Gold Book NYCA: 32,018 MW ² NYC: 11,001 MW LI: 5,031 MW G-J: 15,223 MW (Attachment A1)	2023 Gold Book NYCA: 32,451.5 MW ¹ NYC: 11,303 MY LI: 5090.1 MW G-J: 15,439 MW (Attachment A1)	Most recent Gold Book Forecast is used for Preliminary Base Case parametric study and sensitivity cases	N	
2	Peak Load Forecast (Final Base Case)	October 2022 Fcst October 2023 Fcst NYCA: 32,246 MW¹ NYCA: 31,765.6 MW¹ NYC: 11,285 MW NYC: 11,170.6 MW LI: 5,133 MW LI: 5,080.3 MW G-J: 15,407 MW G-J: 15,273.5 MW Updated Load Forecast in October will be used for Final Base Case				
3	Load Shape (Multiple Load Shape)	Bin 1-2: 2013 Bin 3-4: 2018 Bin 5-7: 2017	Bin 1-2: 2013 Bin 3-4: 2018 Bin 5-7: 2017	ICS Recommendation	N	
4	Load Forecast Uncertainty (LFU) Zonal Model to reflect of data with input from Cortainty LIPA. (Attachment A2)		Zonal Model to reflect current data with input from Con Ed and LIPA. (Attachment A2)	Based on TO and NYISO data analysis	N	
5	LFU Winter			Based on TO and NYISO data analysis	N	

 $^{^{}m 1}$ BTM-NG loads have been incorporated into these numbers.

² The loads associated with the BTM:NG program need to be added to these values.

Generation Parameters

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
6	Existing Generating Unit Capacities	2022 Gold Book Values. Use min. (DMNC vs. CRIS) capacity value	2023 Gold Book Values. Use min. (DMNC vs. CRIS) capacity value	Latest Gold Book publication	N
7	Proposed New Units (Thermal) and re-ratings	O MW of new Thermal resources (Attachment B1)	NYISO recommendation based on documented process that includes the latest Gold Book publication, NYISO interconnection queue, and generation notifications	N	
8	Deactivations and Removals ³	1,331.2 MW unit deactivations (Attachment B2)	-140.1 MY unit deactivations (Attachment B2)	Latest Gold Book publications and generator notifications	N
9	Forced and Partial Outage Rates	Five-year (2017-2021) GADS data for each unit represented. Those units with less than five years – use representative data. (Attachment C)	Five-year (2018-2022) GADS data for each unit represented. Those units with less than five years – use representative data. (Attachment C)	Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period	N
10	Planned Outages	Planned Outages are removed from the IRM study	Planned Outages are removed from the IRM Study	Based on 2021 Final Base Case	N

³ Negative values in the 'SUMMER CRIS (MW)' column represent units that were previously expected to deactivate but are no longer doing so due to the 2023 Peaker Rules. Therefore, they will be reinstated in the 2024-25 IRM Study.

Generation Parameters

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change	
11	Summer Maintenance	Nominal 50 MWs - divided equally between Zones J and K	Nominal 50 MWs - divided equally between Zones J and K	Review of most recent data	N	
12	Combustion Turbine Derates	Derate based on temperature correction curves provided	Derate based on temperature correction curves provided	Operational history indicates the derates are in line with manufacturer's provided curves	N	
13	Existing and Proposed New Wind Units	539.3 MW of Wind Capacity additions totaling 2351.1 MW of qualifying wind. (Attachment B3) 136 MW of off-shore Wind Capacity additions totaling 2502.3 MW of qualifying wind. (Attachment B3) ICAP units based on RPS agreements, interconnection queue and ICS input.				
14	Wind Shape	Actual hourly plant output over the period 2017-2021. New units will use zonal hourly averages or nearby units.	Actual hourly plant output over the period 2018-2022. New units will use zonal hourly averages or nearby units. Normalized offshore wind shapes as published by NYISO over the period 2017-2021	Program randomly selects a wind shape of hourly production from the most recent five- year period for each model iteration.	N	
15	Existing and Proposed New Solar Resources	0 MW of Solar Capacity additions totaling 214.4 MW of qualifying Solar Capacity. (Attachment B3)	tions totaling 214.4 MW of ualifying Solar Capacity. ICAP units based on RPS agreements, interconnection queue and ICS input.		N	
16	Solar Shape	Actual hourly plant output over the period 2017-2021. New units will use zonal hourly averages or nearby units.	Actual hourly plant output over the period 2018-2022. New units will use zonal hourly averages or nearby units.	Program randomly selects a solar shape of hourly production from the most recent five-year period for each model iteration.	N	

Generation Parameters

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
17	BTM- NG Program	No new BTM NG recourses, for 161.6 MW (Attachment B5)	One new BTM NG recourse: Fortistar – N.Tonawanda ("Oxbow") - 3.2 MW (Zone A) with the total of 148.8 MW (Attachment B5)	Both the generation of the participating resources and the full host loads are modeled.	N
18	Small Hydro Resources	Actual hourly plant output over the period 2017-2021	Actual hourly plant output over the period 2018-2022	Program randomly selects a hydro shape of hourly production from the most recent five-year period for each model iteration.	N
19	Large Hydro	Probabilistic Model based on five years of GADS data (2017-2021)	Probabilistic Model based on five years of GADS data (2018-2022)	Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period.	N
20	Landfill Gas	Actual hourly plant output over the period 2017-2021.	Actual hourly plant output over the period 2018-2022.	Program randomly selects a LFG shape of hourly production from the most recent five-year period for each model iteration.	N
21	New ESR (Energy Storage Resources)	20 MW of new battery storage scheduled. 20 MW of total battery storage modeled (see attachment B4).	0 MW of new battery storage scheduled. 20 MW of total battery storage modeled.	ICAP units based on RPS agreements, interconnection queue and ICS input.	N
22	Energy Limited Resources (ELR)	Based upon elections made by August 1 st , 2022	Based upon elections made by August 1 st , 2023 ES and small EL3 output Iimitations lifted at HB14	Existing elections are made by August 1st and will be incorporated into the model. The output limitation updated at the beginning of the 90% of LOLE risk window.	Y

Transactions- Imports and Exports

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change	
23	Capacity Purchases	Existing Rights: PJM – 1,080 MW HQ – 1,190 MW All contracts modeled as equivalent contracts.	Existing Rights: PJM – 1,013 MW HQ – 1,190 MW All contracts modeled as equivalent contracts.	Grandfathered Rights, ETCNL, and other awarded long-term rights	Z	
24	Capacity Sales	Long Term firm sales Summer 265.4 MW Long Term firm sales Summer 265.3 MW These are long term FERC-approved contracts				
25	FCM Sales from a Locality ⁴	No sales modeled within study period	No sales modeled within study period	White paper, NYISO recommendation	N	
26	Wheels through NYCA	300 MW HQ to NE equivalent contract	300 MW HQ to NE equivalent contract	HQ Wheel has an ISO-NE capacity supply obligation (CSO) for 2024-2025	N	
27	New UDRs (Unforced capacity Deliverability Rights)	No new UDRs Identified	No new UDRs Identified	Existing UDR elections are made by August 1 st and will be incorporated into the model	N	
28	New EDRs (External Deliverability Rights)	No new EDRs Identified	No new EDRs Identified	Existing EDRs are incorporated in the model as an increase in the transfer limits	N	

⁴ Final FCM sales that will materialize are unknowable at the time of the IRM study. To reflect the impact these sales have on reliability, the NYISO applies a Locality Exchange Factor in the market.

Topology

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
29	Interface Limits	Central East forward and Group limit updates due to AC Transmission Segment A, Neptune no longer derated unless further delay in return to full service, UPNY-ConED series reactors in service, West Central Reserve uprate External transfer limits update, Zone K export Transfer Limit update	Updates to the forward limits of Central East, Central East Group, Marcy South, Capital to Hudson Valley, UPNYSENY, and UPNY- ConED interfaces due to the partial completion of Segment B of the AC Transmission Project. The delay of the Dover PAR construction is captured.	Based on the most recent NYISO studies and processes, such as Operating Study, Operations Engineering Voltage Studies, Comprehensive System Planning Process, and additional analysis including interregional planning initiatives	Y
30	New Transmission	None Identified	None Identified	Based on TO provided models and NYISO's review	N
31	AC Cable Forced Outage Rates All existing Cable EFORds for I and LI to reflect most recent f year history (2017-2021) (Attachment E4)		All existing Cable EFORds for NYC and LI to reflect most recent five- year history (2018-2022) (Attachment E4)	TO provided transition rates with NYISO review	N
32	UDR Line Unavailability	Five-year history of forced outages (2017-2021)	Five-year history of forced outages (2018-2022)	NYISO/TO review	N

Emergency Operating Procedures

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
33	Special Case Resources	July 2022 – 1,224 MW based on registrations and modeled as 860 MW of effective capacity. Monthly variation based on historical experience.	July 2022 – 1,281 MW based on registrations and modeled as 896.5 MW of effective capacity. Monthly variation based on historical experience.	SCRs sold for the program discounted to historic availability. Summer values calculated from July 2023 registrations. Performance calculation updated per ICS presentations on SCR performance.	N
34	Other EOPs	350 MW of 10-min Operation Reserve maintained at Load Shedding 858.4 MW of non-SCR/non- EDRP resources (Attachment D)	400 MW of 10-min Operation Reserve maintained at Load Shedding 929.8 MW of non-SCR/non- EDRP resources (Attachment D)	Based on Whitepaper and NYISO updated analysis recommendation. Based on TO information, measured data, and NYISO forecasts.	N
35			10 EOP steps modeled EOP order updated to align with the emergency operating procedure sequence	Based on agreement with ICS	Y

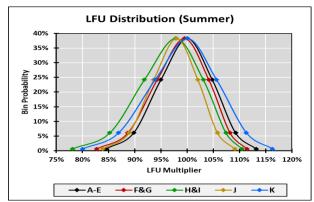
External Control Areas

#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
36	РЈМ	Load and Capacity data will be provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5. (Attachment E)	Load and Capacity data will be provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5. (Attachment E)	Initial Review by the NPCC CP-8 WG prior to Policy 5	Z
37	ISONE, Quebec, IESO	Load and Capacity data will be provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5. (Attachment E)	provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5. (Attachment E) Provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5. (Attachment E) If peeded, add load to externals If peeded, add load to externals		Z
38	External Adjustments per Policy 5	If needed, add load to externals proportional to existing excess capacity.	If needed, add load to externals proportional to existing excess capacity.	Whitepaper on External Control Area adjustments	N
39	Reserve Sharing	All NPCC Control Areas indicate that they will initially share reserves equally among all members and then non-members.	All NPCC Control Areas indicate that they will initially share reserves equally among all members and then non-members.	Per NPCC CP-8 WG	Z
40	Emergency Assistance	Statewide Limit of 3,500 MW of emergency assistance allowed from neighbors.	Statewide emergency assistance allowed from neighbors: Bin 1: 1,470 MW Bin 2: 2,600 MW Bin 3-7: 3,500 MW Individual interface limits are also reduced by Bin	Whitepaper on Modeling of Emergency Assistance for NYCA in IRM studies	Y

Miscellaneous

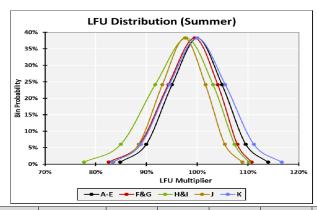
#	Parameter	2023 Model Assumptions	2024 Model Assumptions	Basis for Recommendation	Model Change
41	MARS Model Version	4.10.2035	4.14.2179	Per testing and ICS recommendation	Υ
42	Environmental Initiatives	No new rules for 2023 Capability Year	No new rules for 2024 Capability Year	Review of existing regulations and rules	N

NYCA Summer Load Forecast Coincident and Non-Coincident Peak: 2024 FBC and 2024 PBC


	2024 FBC												
Area	А	В	С	D	E	F	G	Н	1	J	К	NYCA	G_J
NCP - Forecast	2764	2095.9	2766.8	711.5	1360.7	2324.8	2177.2	638.9	1410	11170.6	5080.3		
CP - Forecast	2664.7	2050.6	2694.7	692.9	1323.7	2279.2	2131	624.8	1379	10925.1	4999.9	31765.6	
G-J Peak - Forecast							2161.2	633.7	1398.5	11080.1			15273.5

	2024 PBC												
Area	А	В	С	D	E	F	G	Н	1	J	К	NYCA	G_J
NCP - Forecast	2791	2237.1	2851.3	712	1468	2453	2180	632	1424	11303	5090.1		
CP - Forecast	2701	2190.1	2783.3	692	1428	2412	2137	620	1397	11083	5008.1	32451.5	
G-J Peak - Forecast							2165	628	1416	11230			15439

	Delta												
Area	Α	В	С	D	E	F	G	Н	1	J	K	NYCA	G_J
NCP - Forecast	-27	-141.2	-84.5	-0.5	-107.3	-128.2	-2.8	6.9	-14	-132.4	-9.8		
CP - Forecast	-36.3	-139.5	-88.6	0.9	-104.3	-132.8	-6	4.8	-18	-157.9	-8.2	-685.9	
G-J Peak - Forecast							-3.8	5.7	-17.5	-149.9			-165.5


NYCA Summer Load Forecast Uncertainty Model: 2023 and 2024

Load Forecast 2023

Bin	Bin z	Bin Probability	А-Е	F&G	H&I	J	К
Bin 1	2.74	0.62%	113.18%	111.42%	110.50%	109.10%	116.30%
Bin 2	1.79	6.06%	109.25%	108.20%	107.41%	105.78%	111.32%
Bin 3	0.89	24.17%	104.80%	104.14%	103.08%	102.05%	105.60%
Bin 4	0.00	38.29%	100.00%	99.46%	97.82%	97.98%	100.00%
Bin 5	-0.89	24.17%	94.96%	94.28%	91.83%	93.60%	93.87%
Bin 6	-1.79	6.06%	89.75%	88.67%	85.21%	88.90%	86.89%
Bin 7	-2.74	0.62%	84.49%	82.72%	78.09%	83.89%	80.04%

Load Forecast 2024

Bin	Bin z	Bin Probability	A-E	F&G	н&і	J	к
Bin 1	2.74	0.62%	113.93%	110.69%	110.18%	108.88%	116.62%
Bin 2	1.79	6.06%	109.54%	107.86%	107.34%	105.42%	111.14%
Bin 3	0.89	24.17%	104.86%	104.04%	103.09%	101.61%	105.52%
Bin 4	0.00	38.29%	100.00%	99.46%	97.81%	97.51%	100.00%
Bin 5	-0.89	24.17%	95.00%	94.29%	91.70%	93.12%	94.48%
Bin 6	-1.79	6.06%	89.91%	88.61%	84.93%	88.45%	88.89%
Bin 7	-2.74	0.62%	84.79%	82.53%	77.65%	83.48%	83.27%

NYCA Winter Load Forecast Uncertainty Model: 2024

Bin	Bin z	Bin Probability	NYCA
Bin 1	2.74	0.62%	110.37%
Bin 2	1.79	6.06%	106.37%
Bin 3	0.89	24.17%	102.75%
Bin 4	0.00	38.29%	99.42%
Bin 5	-0.89	24.17%	96.29%
Bin 6	-1.79	6.06%	93.30%
Bin 7	-2.74	0.62%	90.41%

New Thermal Units and Unit Re-Ratings

	New Thermal Units and Unit Re-ratings (summer ratings)									
Project or Generator Name	Zone	2023 Gold Book (MW) CRIS	2023 Gold Book (MW) DMNC	New or Incremental (MW)	2024 MARS Model (MW)					
	New Units									
Total New Units and Uprates (N	MW)									

Deactivations and Removals

Unit Removal since 2024-2025 IRM Study								
Generator Name	Туре	Zone	SUMMER CRIS (MW)					
Coxsackie GT	GT	G	-19.0					
Astoria GT 01	GT	J	-13.4					
Glenwood GT 03	GT	К	-49.9					
Shoreham 1	GT	К	-41.3					
Shoreham 2	GT	К	-16.5					
Western NY Wind Power	WT	В	0					
Total Removals			-140.1					

Note: Negative values in the 'SUMMER CRIS (MW)' column represent units that were previously expected to deactivate but are no longer doing so due to the 2023 Peaker Rules. Therefore, they will be reinstated in the 2024-25 IRM Study.

New Intermittent Resources

New Intermittent Units							
Resource	Zone	CRIS (MW)	Summer Conshility (MMA)	MARS Modeled Capacity			
Capability (MW) Wind							
South Fork Wind Farm (Off-Shore)	К	96.0	96.0	96.0			
South Fork Wind Farm II (Off-Shore)	К	40.0	40.0	40.0			
Total Wind				136.0			

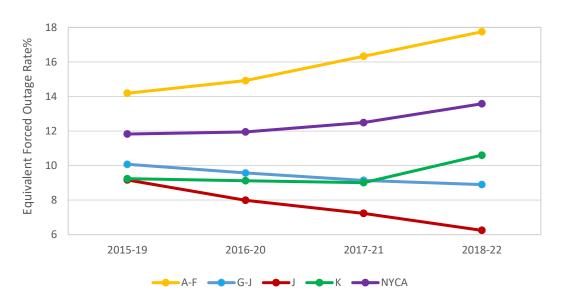
Solar						
Albany County	F	20.0	20.0	20.0		
Albany County II	F	20.0	20.0	20.0		
East Point Solar	F	50.0	50.0	50.0		
Total Solar				90.0		

New Energy Storage Resources

Energy Storage							
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability VS CRIS			
	New Battery Units						
Total New Energy Storage							

Resources in the Behind the Meter Net Generation Program (BTM-NG)

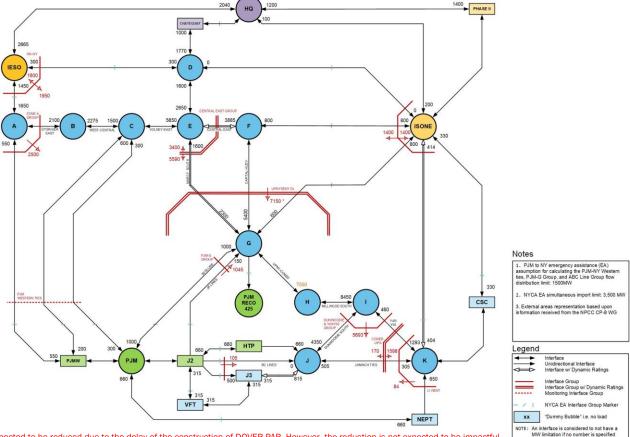
Attachment B5 - Units in the Behind the Meter Net Generation Program*						
Generator Name	Zone	Resource Value (MW) ⁵	Peak Load Adjustment (MW) ⁶			
Existing:						
Stony Brook	K	40.7	38.9			
Greenidge 4	С	86.6	44.1			
Lyons Falls Hydro	E	0.0	1.8			
KIAC_JFK	J	126.3	15.2			
Red Rochester	В	76.2	45.6			
New:						
Fortistar – N.Tonawanda ("Oxbow")	А	57.3	3.2			
Total BTM-NG			148.8			


 $^{{}^{\}star}\text{The IRM}$ study independently models the generation and load components of BTM:NG Resources.

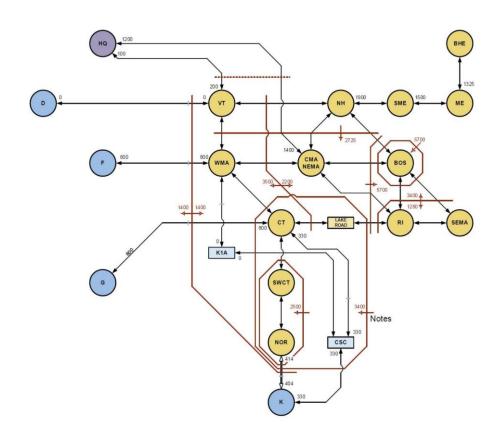
⁵ Based on adjusted Dependable Maximum Gross Capability (DMGC) value.

⁶ Based on Average Coincident Host Load (ACHL).

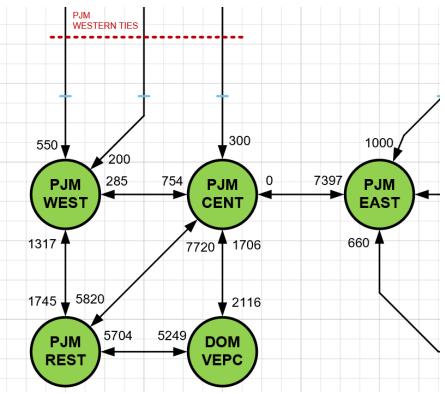
NYCA Five Year Derating Factors


New York 5 Year EFORds

Emergency Operating Procedures


Step	Procedure	2023 IRM MW Value	2024 IRM MW Value
1	Special Case Resources – Load, Gen	1,224 MW Enrolled/ 860 MW Modeled	1,281 MW Enrolled/ 896.5 MW Modeled
2	5% manual voltage Reduction	85.43 MW	113.11 MW
3	Thirty-minute reserve to zero	655 MW	655 MW
4	Voluntary industrial curtailment	240.05 MW	267.17 MW
5	General Public Appeals	80 MW	74 MW
6	5% remote voltage reduction	452.92 MW	475.56 MW
7	Emergency Purchases	Varies	Varies
8	Ten-minute reserves to zero	960 MW (350 MW maintained at load shedding)	910 MW (400 MW maintained at load shedding)
9	Customer disconnections	As needed	As needed
10	Adjustment used if IRM is lower than technical study margin	As needed	As needed

IRM Topology



^{*} The UPNYSENY transfer limit is expected to be reduced due to the delay of the construction of DOVER PAR. However, the reduction is not expected to be impactful.

ISO-NE 14 Bubble Model

PJM Bubble Model

5 Year Average C	able Outage Rate
2017-21	2018-22
7.06%	4.83%

The facilities included in these averages are VFT, HTP, Dunwoodie-South, Y49/Y50, CSC, Neptune, Norwalk-Northport and A-Line.

SCR Determinations 2023 and 2024 IRM Studies

	S	CR Performance for	2024 IRM Study			
Super Zones	Enrollments (July 2023 - estimated)	Forecast (2024) ⁶	Performance Factor ⁷	UCAP (2024)	Adjustment Factor ⁸	Model Value
A - F	719.1	719.1	0.871	626.3	0.942	589.8
G - I	84.3	84.3	0.778	65.5	0.843	55.3
J	442.4	442.4	0.706	312.4	0.745	232.7
к	35.4	35.3	0.698	24.6	0.762	18.8
Totals	1281.0	1281.0		1028.9		896.5
					Overall Performance	= 70.0%
	S	CR Performance for	2023 IRM Study			
Super Zones	Enrollments (July 2022 - estimated)	Forecast (2023) ⁶	Performance Factor ⁷	UCAP (2023)	Adjustment Factor ⁸	Model Value
A - F	694.5	694.5	0.873	606.6	0.929	563.5
G - I	79.1	79.1	0.774	61.2	0.842	51.5
J	417.5	418.6	0.706	295.6	0.745	220.2
К	33.7	33.7	0.698	23.5	0.762	17.9
Totals	1224.8	1226.0		986.8		853.1
					Overall Performance	= 69.6%

^{6.} These values represent no growth from July ICAP based enrollments for the previous year. Differences in data in this column are due to software rounding updates since the 2023 IRM. Updated data aligns with 2023 Gold Book values.

^{7.} Performance Factor based on ACL methodology.

^{8.} The SCR Adjustment factor captures two different performance derates; 1) Calculated Translation Factor (TF) between ACL and CBL values, and the Fatigue Factor (FF=1.00).

Wind Units Modeled

Wind						
Resource	Zone	CRIS (MW)	Summer Capability (MW)	MARS Modeled Capability**		
Bliss Wind Power [WT]	A	100.5	100.5	100.5		
Canandaigua Wind Power [WT]	С	125.0	125.0	125.0		
High Sheldon Wind Farm [WT]	С	112.5	118.1	112.5		
Howard Wind [WT]	С	57.4	55.4	55.4		
Orangeville Wind Farm [WT]	С	94.4	93.9	93.9		
Wethersfield Wind Power [WT]	С	126.0	126.0	126.0		
Altona Wind Power [WT]	D	97.5	97.5	97.5		
Chateaugay Wind Power [WT]	D	106.5	106.5	106.5		
Clinton Wind Power [WT]	D	100.5	100.5	100.5		
Ellenburg Wind Power [WT]	D	81.0	81.0	81.0		
Jericho Rise Wind Farm [WT]	D	77.7	77.7	77.7		
Marble River Wind [WT]	D	215.2	215.2	215.2		
Hardscrabble Wind [WT]	E	74.0	74.0	74.0		
Madison Wind Power [WT]	E	11.5	11.6	11.5		
Maple Ridge Wind [WT01]	E	231.0	231.0	231.0		
Maple Ridge Wind [WT02]	E	90.7	90.8	90.7		
Munnsville Wind Power [WT]	E	34.5	34.5	34.5		
Arkwright Summit Wind Farm [WT]	A	78.4	78.4	78.4		
Eight Point Wind Energy Center [WT]	С	101.2	111.2	101.2		
Bluestone Wind [WT]	E	111.8	111.8	111.8		
Number 3 Wind Energy [WT]	E	103.9	103.9	103.9		
Ball Hill Wind [WT]	A	100.0	100.0	100.0		
Baron Winds [WT]	С	300.0	121.8	121.8		
South Fork Wind Farm (Off-Shore)	K	96.0	96.0	96.0		
South Fork Wind Farm II (Off-Shore)	K	40.0	40.0	40.0		
Total		2667.2	2502.3	2486.5		

Wind Units Not Currently Participating in ICAP Market

Wind									
Resource	Zone	e Nameplate (MW) CRIS (MW)		Summer Capability (MW)	MARS Modeled Capacity				
Erie Wind [WT]	А	15.0	0.0	0.0	0.0				
Steel Wind [WT]	А	20.0	0.0	0.0	0.0				
Western NY Wind Power [WT]	В	6.6	0.0	0.0	0.0				
Marsh Hill Wind Farm [WT]	С	16.2	0.0	0.0	0.0				
Copenhagen Wind [WT]	E	79.9	79.9	0.0	0.0				
Roaring Brook [WT]	Е	79.7	79.7	0.0	0.0				
Fenner Wind [WT]	С	30.0	30.0	0.0	0.0				
Cassadaga Wind [WT]	А	126.0	126.0	0.0	0.0				
Total		373.4	315.6	0.0	0.0				

Solar Units Modeled

Solar						
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability vs. CRIS		
Long Island Solar Farm [PV]	К	31.5	31.5	31.5		
Calverton Solar Energy Center [PV]	К	22.9	22.9	22.9		
Brandscomb Solar [PV]	F	20.0	20.0	20.0		
Darby Solar [PV]	F	20.0	20.0	20.0		
Grissom Solar [PV]	F	20.0	20.0	20.0		
Janis Solar [PV]	С	20.0	20.0	20.0		
Pattersonville Solar [PV]	F	20.0	20.0	20.0		
Puckett Solar [PV]	С	20.0	20.0	20.0		
ELP Stillwater Solar [PV]	F	20.0	20.0	20.0		
Regan Solar [PV]	F	20.0	20.0	20.0		
Albany County	F	20.0	20.0	20.0		
Albany County II	F	20.0	20.0	20.0		
East Point Solar	F	50.0	50.0	50.0		
Total		304.4	304.4	304.4		

Solar Units Not Modeled

Solar						
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability vs. CRIS		
Shoreham Solar [PV]*	К	24.9	0.0	0.0		
Total		24.9	0.0	0.0		

^{*}Unit provides power at the distribution rather than at the transmission level.

LFG Units Modeled

LFG							
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability VS CRIS			
CHAFEE [IC]	А	6.4	6.4	6.4			
Model City Energy LFGE [IC]	А	5.6	5.6	5.6			
Modern LFGE [IC]	А	6.4	6.4	6.4			
Hyland LFGE [IC]	В	4.8	4.8	4.8			
Mill Seat [IC]	В	6.4	6.4	6.4			
Broome 2 [IC]	С	2.0	2.1	2.0			
Broome LFGE [IC]	С	2.1	2.4	2.1			
High Acres Group [IC] (23767)	С	9.6	9.6	9.6			
Ontario LFGE [IC]	С	11.2	11.2	11.2			
Seneca Energy Group [IC] (23797)	С	17.6	17.6	17.6			
Clinton LFGE [IC]	D	6.4	6.4	6.4			
DANC LFGE [IC]	E	6.4	6.4	6.4			
Oneida-Herkimer LFGE [IC]	E	3.2	3.2	3.2			
Colonie LFGTE [IC]	F	6.4	6.4	6.4			
Fulton County Landfill [IC]	F	3.2	3.2	3.2			
Totals		97.7	98.1	97.7			

LFG Units Not Modeled

LFG						
Resource	Zone CRIS (MW)		Summer	Lesser of Summer Capability VS CRIS		
			Capability (MW)	and the second of the second o		
Chautauqua LFGE	Α	9.6	0.0	0.0		
Synergy Biomass	В	2.0	0.0	0.0		
Madison County LFGE [IC]	Е	1.6	0.0	0.0		
Total		13.2	0.0	0.0		

Assumption Matrix History

Date	Ver	Preliminary Base Case	Date	Ver	Final Base Case
2/1/23	V0.0	Preliminary assumptions without attachments			
3/28/23	V1.0	Preliminary assumptions with Attachment C	8/22/23	V0.0	Preliminary assumptions Updates to Attachments D and F
5/3/23	V2.0	Preliminary assumptions with Attachment A1, B3 Updates to Attachments D (item #8), G, and G1-G5	0, ==, =0		
5/30/23	V3.0	Preliminary assumptions with Attachment B2, D (item #8), and E1-E3	9/29/23	V1.2	Preliminary assumptions Updates to Attachments A1, B2, B5, D and E1
6/28/23	V4.0	Preliminary assumptions with Attachment A2, A3, D, Updates to Attachment E1, E4, and F			