

Extreme Weather Impacts on Resource Adequacy Intermittent Renewable Modeling: BTM Solar Update

Jack Garrett

NYISO Resource Adequacy

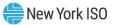
Installed Capacity Subcommittee #305

July 10, 2025

Recap from EWWG 23 & ICS #304

- There are many ways to determine "extreme weather" conditions for resource adequacy modeling purposes
 - The "low output count" is one method that measures an aggregation of the output from intermittent renewable resources to determine if a single hour is below a specified capacity factor value (a 10% value was used for the analysis to date)
- Based on the prior <u>analysis</u>, the DNV simulated data (2000 to 2022) and production data (2019 to 2024) regarding intermittent renewable resource output showed similar trends
 - Both datasets indicated that 2021 represents a "bad weather" year (i.e., exhibiting lower intermittent renewable resource production) and most other years fall within one standard deviation of the average
 - Observed differences in datasets:
 - DNV simulated data indicated that 2018 represents a "bad weather" year
 - Production data indicated that 2022 represents a "good weather" year (i.e., exhibiting higher intermittent renewable resource production) and 2023 represents a "bad weather" year
- Increasing the historical data period for the intermittent renewable production shapes from 5 to 10 years had a limited impact on the 2024-2025 Final Base Case
 - The IRM increased from 24.4% to 24.57% (Delta = +0.17%)
 - The hourly output of individual shapes during the 10 highest peak load hours was strongly correlated with the change in loss of load expectation (LOLE) observed
 - Focusing solely on the 10 highest peak load hours to identify "extreme weather" conditions is not advised because the driver(s) for LOLE may change over time with future modeling updates
 - Methodologies such as the "low output count" provide a more objective and sustainable approach for identifying "extreme weather" conditions

Information Requests from Prior Discussions


- Zonal considerations for the intermittent renewable fleet
- Incorporation of behind-the-meter (BTM) solar into the analysis
- Consideration of "lulls"
 - The NYISO is currently working on this analysis
 - Preliminary results show similar trends to the analysis described in this presentation
 - More information will be provided at a future meeting

Zonal Considerations

- Most of the existing, non-BTM solar intermittent renewable fleet is in Load Zones A-E (i.e., land-based wind (LBW) and utility-scale solar (UPV))
 - Existing BTM solar is, in aggregate, more evenly distributed among Load Zones A-E (~46%) and Load Zones F-K (~54%)
- From the previous test case results, there does not appear to be a significant correlation between hourly output from the intermittent renewables in Load Zones F-K and the LOLE events
 - The upstate fleet is driving the test case LOLE changes based on its aggregate output during the peak load hours
 - This may change in the future with addition of downstate BTM solar, offshore wind (OSW), and energy storage

Zones	BTM Solar (MW)	UPV (MW)	LBW (MW)	OSW (MW)	Total (MW)
Α	410	0	278.9	0	688.9
В	560	0	0	0	560
С	980	217	735.8	0	1,932.8
D	120	0	678.4	0	798.4
E	660	0	737.1	0	1,397.1
F	800	300	0	0	1,100
G	650	0	0	0	650
н	110	0	0	0	110
1	140	0	0	0	140
J	560	0	0	0	560
К	990	54.4	0	136	1,180.4
NYCA	5,980	571.4	2,430.2	136	9,117.6

Incorporation of BTM Solar

The BTM solar data contains hourly data from 2012 to 2024 and is combined with the DNV simulated data from 2000 to 2022

- The NYISO developed a time series of estimated BTM solar production for the period from 2012 through 2024
- Pre-2017 estimates were modeled based on historical Global Horizontal Irradiance (GHI) and installed BTM solar capacity data
- 2017 through current year estimates were based on sampled inverter data
- There is approximately 5,980 MW of BTM solar installed capacity in NYCA based on the 2025 Load & Capacity Data report (Gold Book) and previous work conducted by the NYISO's Demand Forecasting and Analysis team (LFTF 2024 Long Term Forecast)
 - BTM solar makes up a majority of the total intermittent renewable fleet at roughly 66%
 - The other intermittent renewables are as follows: 571.4 MW of utility-scale solar (~6%), 2,430.2 MW of LBW (~27%), and 136 MW of OSW (~1%)

Results:

- 2021 represents a "bad weather" year as previously identified in the production and DNV data without BTM solar
- 2014 represents a "good weather" year with the incorporation of BTM solar data
- 2018 has an overall capacity factor (indicated as "CF" in the table) that is two standard deviations below the average (see Z-Score results in the table)
 - Refer to Slide 5 of the 5/30/2025 EWWG presentation for additional information on Z-score calculations
- All other weather years included in the assessment fall within approximately one standard deviation of the mean (see Z-Score results in the table) when measured by low output count (indicated as "LOC" in the table) and capacity factor

DNV Simulation & BTM Solar Data Summary								
Years	BTM Solar CF	UPV CF	LBW CF	OSW CF	CF	CF Z Score	Low Output Count	LOC Z Score
2012	0.182	0.224	0.298	0.421	0.219	0.331	2998	0.224
2013	0.180	0.220	0.314	0.482	0.223	0.767	2857	-0.657
2014	0.181	0.221	0.331	0.446	0.227	1.258	2678	-1.774
2015	0.177	0.230	0.312	0.446	0.220	0.432	2883	-0.494
2016	0.178	0.234	0.314	0.471	0.222	0.681	2913	-0.307
2017	0.166	0.218	0.321	0.484	0.215	-0.182	2885	-0.482
2018	0.150	0.207	0.306	0.469	0.200	-2.010	3064	0.636
2019	0.159	0.217	0.321	0.458	0.210	-0.756	3051	0.554
2020	0.167	0.227	0.320	0.462	0.216	-0.080	2943	-0.120
2021	0.164	0.214	0.287	0.453	0.204	-1.509	3357	2.465
2022	0.184	0.227	0.314	0.457	0.226	1.068	2955	-0.045

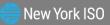
Incorporation of BTM Solar (cont.)

- The addition of BTM solar to historical production data shows a similar trend to what was seen previously in the low output counts analysis:
 - 2021 continues to represent a "bad weather" year
 - 2022 continues to represent a "good weather" year
 - With the addition of BTM solar data, 2023 represents a more average year
 - Other weather years included in the assessment fall within approximately one standard deviation of the mean for each measurement (i.e., capacity factor and low output count)

	Production & BTM Solar Data Summary							
Years	BTM Solar CF	UPV CF	LBW CF	OSW CF	CF	CF Z Score	Low Output Count	LOC Z Score
2019	0.159	0.182	0.254	0.449	0.190	0.103	3638	-0.477
2020	0.167	0.174	0.255	0.451	0.190	0.092	3582	-0.772
2021	0.164	0.181	0.223	0.443	0.179	-1.716	4001	1.439
2022	0.184	0.187	0.250	0.457	0.199	1.407	3466	-1.384
2023	0.182	0.184	0.209	0.461	0.185	-0.667	3934	1.085
2024	0.175	0.177	0.237	0.301	0.195	0.781	3749	0.109

Observations

- Incorporation of the BTM solar data does not materially change the results of the previous work
 - 2021 continues to represent a "bad weather" year based on the analysis
 - 2021 is incorporated in the 5-year historical dataset for the 2026-2027 IRM study
 - Most other years included in the assessment represent fairly average weather years based on the analysis



Next Steps

- Continue discussions at Extreme Weather Working Group based on feedback
- Share additional research and findings at future ICS meetings

Questions?

Our Mission and Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

