

New York State Reliability Council – Extreme Weather Working Group (EWWG)
Meeting # 25 Minutes – August 29, 2025
Zoom

1. Draft Meeting Minutes for Meeting #24 – Hilme Athar

- **Approved**

2. Current Agenda Items:

- NERC had an update on their Project 2023-07, which pertains to transmission system planning for requirements for extreme weather and they have currently have a standard authorization request to get feedback from the industry if they will adopt these standards
- The project has two phases:
 - Phase one, they were requested by FERC to develop a new reliability standard for extreme heat and extreme cold weather
 - They've drafted their new standard TPL-008-01 that is looking specifically at extreme heat and extreme cold which has been discussed in EWWG
 - Phase two, they're also trying to draft a new reliability standard to go hand-in-hand with the existing TPL-001 to address what they call normal and extreme natural events, and then also gas electric interdependences and DER benchmarks
- From the request, they received several insightful comments:
 - EEI addressed all the kinds of issues with the standard authorization such that it creates unnecessary work since they're already implementing TPL-008 anyway and they don't define what the differences between extreme natural events and extreme heat and cold
 - Generally, a lot of groups are in agreement with EEI or with each other, just that a majority of the standard is too prescriptive, but then and duplicates work that it seems unnecessary to and it also has like a capital cost, because they also prescribe putting together corrective action plans if you're not able to meet those new study requirements.
 - Most of the industry is not in favor of going forward with making a new reliability standard, because there's already work being done in place that addresses the same issues that are brought up in phase two.
- R. Clayton posits that capital costs and remedial measures are incurred for the TPL-008 if they don't meet the criteria and Hilme concurs. He then asks about the timeline for the new standard implementation
- H. Athar explains that it is not urgent they'll start implementing TPL-008 next year but he is unsure of the exact effective dates.
- R. Clayton explains that we should follow the updates to TPL-008 and the possible new standard based on the SAR keenly since the current procedure does not specifically address extreme weather conditions, other than limitations due to weather conditions. Furthermore, it does not address gas electric coordination, and it doesn't address DER either. All of these items are in this SAR. He expands that the Reliability Council can't have a rule that's less stringent than either NERC or NPCC, and the way it's written right now, it could be interpreted that way.

- H. Athar asks R. Clayton if it will be worth it for EWWG to bring this to the attention of the EC. R. Clayton suggests that he could tag team with EWWG and they could include this in their report and he will support them?
- T. Primrose points out that the SAR employs a probabilistic approach, including 1 in 50 or 95th percentile events. He questions how something like that could be characterized? Is there enough data to find events like that? Or does that also have to be investigated before the standard could be met?
- R. Clayton explains that transmission planning gets data based on deterministic events and conditions since it's very difficult to coordinate all of the probabilities associated with disturbances and system conditions. The SAR requires setting up benchmark system conditions before applying all the contingencies and even if there's some probabilistic basis for it, there would need to be a threshold or some number that is based on probabilistic data. Based on his interpretation, this fixed number becomes the benchmark number.
- T. Primrose adds that it would be difficult to come to that benchmark number with the data we have to work with now and would almost require a new analysis.
- G. Jordan expands that most of the work of EWWG primarily focuses on wind lulls or long periods and the impact of extended hours of certain conditions. In contrast, the SAR discussion places a greater emphasis on individual events. The 1 in 50 event could be a one hour event, that is really hot or really cold so it adds a new dimension to EWWG
- T. Primrose asks what the life cycle of the SAR, from standards research, to approval, to implementation? If it makes it through the process, how long does something like this take?
- R. Clayton explains that the expected turnaround should be in years instead of months

3. Items to address for next meeting:

- G. Jordan mentions that the group began by examining the impact of adding 10,000MW of OSW and the impact that it would have and the fact that they were collocated, and that it could cause some severe issues. This is the reason why the group started looking at wind lulls and how long it was going to take and how coordinated all these outages would be. Now it seems that there are significant changes in prospective OSW, as projects keep getting cancelled. Is it still worth the effort to look at wind lulls if it will be less than 5% of the system? Is it still a concern in the next 5 years to examine when the OSW goes down?
- R. Clayton answers with three points:
 - We're still operating under the New York State law of CLCPA targets
 - Even if all the offshore wind goes away, it may only be temporary. The political climate may change again in the near future,
 - We've got a whole bunch of existing renewables that are subject to lulls. There's almost 6,000 MW of behind-the-meter solar.
- G. Jordan suggests that maybe the focus should be more on solar instead of OSW for now in order to stay relevant to current conditions
- T. Primrose suggests that we should push through with the work we've done, make some recommendations and have everything ready in case the OSW actually does materialize and we fall behind.

- D. Kirk shares that looking at wind lulls or even aggregate renewable lulls in isolation from the larger nature of the system is of fairly limited use at this point. He states that the only way to study that in a relevant way to the system is to do capacity expansion modeling, or just full system modeling on a bunch of time scales and doing sensitivity experiments that ask actionable questions about what is needed to have on the system in order to make sure that the reliability is high.
- D. Kirk explains that the next big question should be, how do you build a system that does all the things we wanted to do? We should push for that kind of analysis from either NYSERDA or NYISO or a collaboration between the two
- R. Caiazzo explains that wind and solar is now a necessity for the system and reliability criteria will inevitably have to be made
- T. Primrose expanded that today's design criteria is based on an MSSC of 9 mile point (1310MW). If the design criteria was 9 mile point and Ravenswood 3 the system would look very different
- D. Kirk qualifies that all around the world, storage is being built, pump storage capacity is increasing, and broader interconnections are being implemented to address system changes that are happening. These are the kind of questions that need to be addressed in EWWG, but the problem can't be solved by looking at generation in isolation from those other decisions.
- To address intermittence, G. Jordan states that ICS has moved behind-the-meter solar out of solar profiles modelling, and so it's being modeled explicitly. It is very useful because now we can see what happens with the solar and variations on it.
- R. Clayton asks that as far as resource capacity is concerned, the Mars program is being used in a way that recognizes the intermittency or the coordinated outages of solar and wind for the system that we've got right now.
- G. Jordan answers that by modeling the randomness of the particularly the solar, and bringing that out, that has increased the IRM by about a percentage point. It's and the fact that you use nameplate capacity on renewables, so your IRM your reserve margin just from a visual standpoint is going up. So all things considered, instead 18%, it is now up to 27% now
- T. Primrose explains that the ICS saw that behind-the-meter solar modeling as a universally good change since it contributes to roughly 300 MW of extra ICAP on the system and for Zone K, it was 1.5% LCR change. That's 75 MW extra that has to be smoothed out which is at least an actionable result.
- R. Caiazzo clarifies that he is relieved by the input above in the short term, but he believes that policy makers don't share the same expertise as the members of EWWG so they are still set on meeting 2030 and 2040 renewable targets which causes him concern in the long term
- G. Jordan adds that after completing one report and developing others, NYSERDA has come to recognize that, New York possibly does need to keep roughly 25 GW of fossil around in order to maintain reliability, and that going to 100% renewables in batteries, etc. doesn't work
- R. Clayton suggests keeping track of what NYISO is doing for PRR-153